Background: Foetal RHD genotyping can be predicted by real-time polymerase chain reaction (qPCR) using cell-free foetal DNA extracted from maternal plasma. The object of this study was to determine the diagnostic accuracy and feasibility of non-invasive RHD foetal genotyping, using a commercial multiple-exon assay, as a guide to appropriate administration of targeted antenatal immunoprophylaxis.
Material And Methods: Cell-free foetal DNA was extracted from plasma of RhD-negative women between 11-30 weeks of pregnancy. The foetal RHD genotype was determined non-invasively by qPCR amplification of exons 5, 7 and 10 of the RHD gene using the Free DNA Fetal Kit RhD. Results were compared with serological RhD cord blood typing at birth. The analysis of diagnostic accuracy was restricted to the period (24-28 weeks) during which foetal genotyping is usually performed for targeted antenatal immunoprophylaxis.
Results: RHD foetal genotyping was performed on 367 plasma samples (24-28 weeks). Neonatal RhD phenotype results were available for 284 pregnancies. Foetal RHD status was inconclusive in 9/284 (3.2%) samples, including four cases with RhD maternal variants. Two false-positive results were registered. The sensitivity was 100% and the specificity was 97.5% (95% CI: 94.0-100). The diagnostic accuracy was 99.3% (95% CI: 98.3-100), decreasing to 96.1% (95% CI: 93.9-98.4) when the inconclusive results were included. The negative and positive predictive values were 100% (95% CI: 100-100) and 99.0% (95% CI: 97.6-100), respectively. There was one false-negative result in a sample collected at 18 weeks. After inclusion of samples at early gestational age (<23 week), sensitivity and accuracy were 99.6% (95% CI: 98.7-100) and 95.5% (95% CI: 93.3-97.8), respectively.
Discussion: This study demonstrates that foetal RHD detection on maternal plasma using a commercial multiple-exon assay is a reliable and accurate tool to predict foetal RhD phenotype. It can be a safe guide for the appropriate administration of targeted prenatal immunoprophylaxis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214827 | PMC |
http://dx.doi.org/10.2450/2018.0270-17 | DOI Listing |
Asian J Transfus Sci
September 2022
Department of Obstetrics and Gynecology, Faculty of Medicine Padjajaran University, Hasan Sadikin General Hospital, Bandung, Indonesia.
Anti-M antibody is one of the causes of severe fetal anemia and intrauterine death despite its relatively low frequency. A G3P2 26-year-old pregnant woman referred to our hospital at 29 weeks gestational age (WGA) with fetal hydrops. Her second pregnancy results in intrauterine fetal death at 35 WGA due to fetal hydrops.
View Article and Find Full Text PDFAsian J Transfus Sci
May 2023
Department of Transfusion Medicine, Saveetha Medical College and Hospitals, Chennai, Tamil Nadu, India.
Hemolytic disease of foetus and newborn (HDFN) is a disease characterized by the destruction of fetal red cells by the maternal antibodies which occurs due to allo immunization in the mother by feto-maternal blood group incompatibility. The antibodies most frequently implicated in HDFN may vary depending on the demographic location under consideration. In areas where RhIg administration is available, ABO antibodies are more commonly implicated.
View Article and Find Full Text PDFJACC Adv
December 2024
Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
Background: Rheumatic heart disease (RHD) remains as 1 of the major contributors to indirect pregnancy-related mortality and morbidity worldwide and disproportionately affects marginalized populations.
Objectives: In this scoping review, the authors sought to explore the socioeconomic, cultural, and health care access-related causes of global disparities in outcomes of pregnancy among individuals with RHD.
Methods: We performed a literature search of all studies published between January 1, 1990, and January 1, 2022, that investigated causes for disparate outcomes in pregnant individuals with RHD.
BMJ Mil Health
January 2025
Emergency Department, Derriford Hospital, Plymouth, UK
The traditional approach to resuscitating injured women of childbearing potential (WCBP) with an unknown RhD type is to transfuse RhD-negative blood products. This is to prevent alloimmunisation to the RhD antigen and ultimately prevent haemolytic disease of the fetus and newborn (HDFN) in future pregnancies should she survive. RhD-negative blood products are scarce in both military and civilian blood stocks.
View Article and Find Full Text PDFBlood
December 2024
Sanquin, Amsterdam, Netherlands.
Alloimmunization during pregnancy occurs when a mother produces antibodies against fetal antigens, leading to complications like hemolytic disease of the fetus and newborn (HDFN) and fetal and neonatal alloimmune thrombocytopenia (FNAIT). HDFN involves destruction of fetal red blood cells, potentially causing severe anemia, hydrops fetalis, and fetal death. FNAIT affects fetal platelets and possibly endothelial cells, resulting in risk of intracranial hemorrhage and brain damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!