We use computer simulations to study the existence and stability of a biaxial nematic N_{b} phase in systems of hard polyhedral cuboids, triangular prisms, and rhombic platelets, characterized by a long (L), medium (M), and short (S) particle axis. For all three shape families, we find stable N_{b} states provided the shape is not only close to the so-called dual shape with M=sqrt[LS] but also sufficiently anisotropic with L/S>9,11,14,23 for rhombi, (two types of) triangular prisms, and cuboids, respectively, corresponding to anisotropies not considered before. Surprisingly, a direct isotropic-N_{b} transition does not occur in these systems due to a destabilization of N_{b} by a smectic (for cuboids and prisms) or a columnar (for platelets) phase at small L/S or by an intervening uniaxial nematic phase at large L/S. Our results are confirmed by a density functional theory provided the third virial coefficient is included and a continuous rather than a discrete (Zwanzig) set of particle orientations is taken into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.120.177801 | DOI Listing |
J Chem Phys
December 2024
Department of Applied Physics, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain.
As the temperature decreases, rigid anisotropic molecules that usually incorporate polar groups, aromatic rings or multiple bonds, orient along a common direction, eventually forming liquid-crystalline phases under specific thermodynamic conditions. This study explores the phase behavior and dynamics of board-shaped mesogens with a 1,4,5,8-tetraphenyl-anthraquinone core and four lateral arms forming an oligo(phenyleneethynylene) scaffold. These molecules are promising candidates for forming the elusive biaxial nematic phase.
View Article and Find Full Text PDFPhys Rev E
October 2024
Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
Nat Commun
November 2024
Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO, USA.
Biaxial nematic liquid crystals are fascinating systems sometimes referred to as the Higgs boson of soft matter because of experimental observation challenges. Here we describe unexpected states of matter that feature biaxial orientational order of colloidal supercritical fluids and gases formed by sparse rodlike particles. Colloidal rods with perpendicular surface boundary conditions exhibit a strong biaxial symmetry breaking when doped into conventional chiral nematic fluids.
View Article and Find Full Text PDFSmall
November 2024
Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, 80217, USA.
Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and reversible shape-changing behaviors, and so serve as potentially transformative materials for various protective and actuation applications. This study contributes to filling a critical knowledge gap in the field by investigating the microscale mesogen organization of nematic LCEs with diverse macroscopic deformation. A polarized Fourier transform infrared light spectroscopy (FTIR) tester is utilized to examine the mesogen organizations, including both the nematic director and mesogen order parameter.
View Article and Find Full Text PDFSoft Matter
July 2024
Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!