A G-quadruplex forming sequence from the MYC promoter region was modified with syn-favoring 8-bromo-2'-deoxyguanosine residues. Depending on the number and position of modifications in the intramolecular parallel G-quadruplex, substitutions with the bromoguanosine analogue at the 5'-tetrad induce conformational rearrangements with concerted all-anti to all-syn transitions for all residues of the modified G-quartet. No unfavorable steric interactions of the C8-substituents in the medium grooves are apparent in the high-resolution structure as determined for a tetrasubstituted MYC quadruplex that exclusively forms the all-syn isomer. In contrast, considerable steric clashes with 5'-phosphate oxygen atoms for those analogues that follow a less flexible 1-nucleotide loop in the native all-anti conformation seem to constitute the major driving force for the tetrad inversion and allow for the rational design of appropriately substituted sequences. Correlations found between the population of species subjected to a tetrad flip and melting temperatures indicate that more effective conformational transitions are compromised by lower thermal stabilities of the modified parallel quadruplexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201801851 | DOI Listing |
Gigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
In eukaryotes, mismatch repair begins with M ut S h omolog (MSH) complexes, which scan newly replicated DNA for mismatches. Upon mismatch detection, MSH complexes recruit the PCNA- stimulated endonuclease Mlh1-Pms1/PMS2 (yeast/human), which nicks the DNA to allow downstream proteins to remove the mismatch. Past work has shown that although Mlh1-Pms1 is an ATPase and this activity is important , ATP is not required to nick DNA.
View Article and Find Full Text PDFAdv Mater
January 2025
Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, Paterna, 46980, Spain.
The soft nature of Metal-Organic Frameworks (MOFs) sets them apart from other non-synthetic porous materials. Their flexibility allows the framework components to rearrange in response to environmental changes, leading to different states and properties. The work extends this concept to titanium frameworks, demonstrating control over charge transport in porous molecular crystals.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Emory University, Atlanta, GA 30322, USA. Electronic address:
Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:
The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!