Cholesteric Liquid Crystal Shells as Enabling Material for Information-Rich Design and Architecture.

Adv Mater

Physics and Materials Science Research Unit, University of Luxembourg, 162 A Avenue de la Faïencerie, 1511, Luxembourg, Luxembourg.

Published: July 2018

The responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key enabling materials in the information technology that surrounds us today. Ongoing research hints at future LC-based technologies of entirely different types, for instance by taking advantage of the peculiar behavior of cholesteric liquid crystals (CLCs) subject to curvature. Spherical shells of CLC reflect light omnidirectionally with specific polarization and wavelength, tunable from the UV to the infrared (IR) range, with complex patterns arising when many of them are brought together. Here, these properties are analyzed and explained, and future application opportunities from an interdisciplinary standpoint are discussed. By incorporating arrangements of CLC shells in smart facades or vehicle coatings, or in objects of high value subject to counterfeiting, game-changing future uses might arise in fields spanning information security, design, and architecture. The focus here is on the challenges of a digitized and information-rich future society where humans increasingly rely on technology and share their space with autonomous vehicles, drones, and robots.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201707382DOI Listing

Publication Analysis

Top Keywords

cholesteric liquid
8
design architecture
8
liquid crystals
8
liquid crystal
4
crystal shells
4
shells enabling
4
enabling material
4
material information-rich
4
information-rich design
4
architecture responsive
4

Similar Publications

Pyrrole in a cholesteric liquid crystal was discharged using a Tesla coil to generate pyrrole radicals, affording linear-shaped nano-ordered pyrrole oligomers. Subsequently, the electrochemical polymerisation of a pre-oriented pyrrole oligomer having good affinity for liquid crystals was performed to achieve polypyrrole-imprinted asymmetry from the cholesteric liquid crystal structure. The resultant polymers were analysed using polarising optical microscopy observations, scanning electron microscopy, electrochemistry, optical spectroscopy, and electron spin resonance.

View Article and Find Full Text PDF

Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.

View Article and Find Full Text PDF

Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals.

Small Methods

December 2024

Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Colored contact lenses have gained popularity among young individuals owing to their ability to alter the appearance of the wearer's eyes. However, conventional lenses containing chemical dyes are susceptible to detachment of the pigment layer, which can lead to corneal damage. In this research, a novel cellulose-based structural color contact lens (SCCL) is presented that enhances aesthetic appeal via a cholesteric liquid crystal (CLC) layer.

View Article and Find Full Text PDF

Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS.

Adv Sci (Weinh)

December 2024

Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Multispectral camouflage materials play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!