Download full-text PDF

Source
http://dx.doi.org/10.5603/KP.2018.0097DOI Listing

Publication Analysis

Top Keywords

adipose-derived stromal
4
stromal cells
4
cells treatment
4
treatment chronic
4
chronic ischaemic
4
ischaemic heart
4
heart disease
4
disease safety
4
safety feasibility
4
feasibility study
4

Similar Publications

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

Background: The use of fat grafting has expanded to include cell and tissue regeneration, necessitating investigations to ensure the viability of stromal and adipose-derived mesenchymal stem cells (ASCs) within the transferred fat parcels. This study explored the impact of harvesting technique and centrifugation on the viability of stromal cells and ASCs in lipoaspirate.

Methods: Fat was harvested from patients undergoing fat grafting using 2 types of liposuction cannula: (A) a 3-mm blunt tip cannula with 3 smooth holes and (B) a 2.

View Article and Find Full Text PDF

Human adipose-derived multipotent stromal cells enriched with IL-10 modRNA improve diabetic wound healing: Trigger the macrophage phenotype shift.

Bioeng Transl Med

January 2025

Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.

Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.

View Article and Find Full Text PDF

Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.

Int J Mol Sci

January 2025

Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.

Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!