Molecular dynamics study of tridymite.

IUCrJ

Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, England.

Published: May 2018

Structural changes in tridymite have been investigated by molecular dynamics simulation. Two thermal processes were carried out, one cooling from the high-temperature hexagonal structure of tridymite (HP-tridymite) and the other heating from the low-temperature monoclinic structure of tridymite (MX1-tridymite). The former process showed that HP, LHP (low-temperature hexagonal structure), OC (orthorhombic structure with 222 symmetry) and OP (orthorhombic structure with 222 symmetry)-like structures appeared in sequence. In contrast, the latter process showed that MX1, OP, OC, LHP and HP-like structures appeared in sequence. Detailed analysis of the calculated structures showed that the configuration underwent stepwise changes associated with several characteristic modes. First, the structure of HP-tridymite determined from diffraction experiments was identified as a time-averaged structure in a similar manner to β-cristobalite, thus indicating the important role of floppy modes of oxygen atoms at high temperature - one of the common features observed in silica crystals and glass. Secondly, the main structural changes were ascribed to a combination of distortion of the six-membered rings in the layers and misalignment between layers. We suggest that the slowing down of floppy oxygen movement invokes the multistage emergence of structures with lower symmetry on cooling. This study therefore not only reproduces the sequence of the main polymorphic transitions in tridymite, except for the appearance of the monoclinic phase, but also explains the microscopic dynamic structural changes in detail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929378PMC
http://dx.doi.org/10.1107/S2052252518004803DOI Listing

Publication Analysis

Top Keywords

structural changes
12
molecular dynamics
8
hexagonal structure
8
structure tridymite
8
orthorhombic structure
8
structure 222
8
structures appeared
8
appeared sequence
8
structure
7
tridymite
5

Similar Publications

In plasma, the zymogens factor XII (FXII) and prekallikrein reciprocally convert each other to the proteases FXIIa and plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK) to release bradykinin, which contributes to regulation of blood vessel tone and permeability. Plasma FXII is normally in a "closed" conformation that limits activation by PKa.

View Article and Find Full Text PDF

Designing Health Recommender Systems to Promote Health Equity: A Socioecological Perspective.

J Med Internet Res

January 2025

Department High-Tech Business and Entrepreneurship Section, Industrial Engineering and Business Information Systems, University of Twente, Enschede, Overijssel, Netherlands.

Health recommender systems (HRS) have the capability to improve human-centered care and prevention by personalizing content, such as health interventions or health information. HRS, an emerging and developing field, can play a unique role in the digital health field as they can offer relevant recommendations, not only based on what users themselves prefer and may be receptive to, but also using data about wider spheres of influence over human behavior, including peers, families, communities, and societies. We identify and discuss how HRS could play a unique role in decreasing health inequities.

View Article and Find Full Text PDF

The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

Design of a light and Ca switchable organic-peptide hybrid.

Proc Natl Acad Sci U S A

February 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!