is a non-fermenting Gram-negative bacterium that is ubiquitous in the environment. In humans, this opportunistic multi-drug-resistant pathogen is responsible for a plethora of healthcare-associated infections. Here, we utilized a whole genome sequencing (WGS)-based phylogenomic core single nucleotide polymorphism (SNP) approach to characterize subgroups, their potential association with human infection, and to detect any possible transmission events. In total, 89 isolates (67 clinical and 22 environmental) from Germany were sequenced. Fully finished genomes of five strains were included in the dataset for the core SNP phylogenomic analysis. WGS data were compared with conventional genotyping results as well as with underlying disease, biofilm formation, protease activity, lipopolysaccharide (LPS) SDS-PAGE profiles, and serological specificity of an antibody raised against the surface-exposed O-antigen of strain K279a. The WGS-based phylogenies grouped the strains into 12 clades, out of which 6 contained exclusively human and 3 exclusively environmental isolates. Biofilm formation and proteolytic activity did correlate neither with the phylogenetic tree, nor with the origin of isolates. In contrast, the genomic classification correlated well with the reactivity of the strains against the K279a O-specific antibody, as well as in part with the LPS profiles. Three clusters of clinical strains had a maximum distance of 25 distinct SNP positions, pointing to possible transmission events or acquisition from the same source. In conclusion, these findings indicate the presence of specific subgroups of strains adapted to the human host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932162 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.00806 | DOI Listing |
Arch Virol
January 2025
Department of Virology, National Institute of Health (NIH), 45500, Park Rd, Chak Shahzad, Islamabad, Pakistan.
Pakistan has experienced a total of six COVID-19 waves throughout the pandemic, each driven by distinct SARS-CoV-2 lineages. This study explores the introduction of Omicron lineage BA.4 into Pakistan, which contributed to the sixth wave between June and September 2022.
View Article and Find Full Text PDFPLoS One
January 2025
School of Health Policy and Management, York University, Toronto, Ontario, Canada.
Wildlife trade can create adverse impacts for biodiversity and human health globally, including increased risks for zoonotic spillover that can lead to pandemics. Institutional responses to zoonotic threats posed by wildlife trade are diverse; understanding regulations governing wildlife trade is an important step for effective zoonotic spillover prevention measures. In this review, we focused on peer-reviewed studies and grey literature conducted on regulatory approaches that govern domestic and international wildlife trade in order to assess the role of local, national and global-level institutions in the prevention of zoonotic spillover and infection transmission between humans.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea.
The self-replication of misfolded prion protein (PrP) aggregates is the major pathological event of different prion diseases, affecting mammal brains by cross-species transmission. Here, the structural modulation of PrP aggregates are reported by activated carbon materials upon near-infrared (NIR) light irradiation. Activated carbon cobalt (ACC) nanosheets are synthesized using glycerol and metal salts to utilize the charge carriers released under NIR light exposure.
View Article and Find Full Text PDFVet Clin North Am Food Anim Pract
January 2025
Auburn University College of Veterinary Medicine, Auburn, AL, USA.
The article discusses the importance of biosecurity in exhibitions, shows, and other public livestock venues, such as petting zoos and agritourism sites. It highlights the risks of disease transmission from animals to humans and between animal groups. The document emphasizes the role of veterinarians in developing biosecurity measures and plans, which should be specific to each venue and reviewed regularly.
View Article and Find Full Text PDFClin Chem
January 2025
Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States.
Background: Institutions of higher education (IHE) have been a focus of SARS-CoV-2 transmission studies but there is limited information on how viral diversity and transmission at IHE changed as the pandemic progressed.
Methods: Here we analyze 3606 viral genomes from unique COVID-19 episodes collected at a public university in Seattle, Washington from September 2020 to September 2022.
Results: Across the study period, we found evidence of frequent viral transmission among university affiliates with 60% (n = 2153) of viral genomes from campus specimens genetically identical to at least one other campus specimen.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!