This letter describes the chemical optimization of a new series of M positive allosteric modulators (PAMs) based on a novel benzomorpholine core, developed via iterative parallel synthesis, and culminating in the highly utilized rodent in vivo tool compound, VU0486846 (7), devoid of adverse effect liability. This is the first report of the optimization campaign (SAR and DMPK profiling) that led to the discovery of VU0486846 and details all of the challenges faced in allosteric modulator programs (both steep and flat SAR, as well as subtle structural changes affecting CNS penetration and overall physiochemical and DMPK properties).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427922 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2018.05.009 | DOI Listing |
Neurotherapeutics
July 2024
Department of Pediatrics, Division of Neurology, Vanderbilt University Medical Center, USA; Vanderbilt University Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Nashville, TN, USA. Electronic address:
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and clinical evaluation of targeted therapies in RTT.
View Article and Find Full Text PDFSci Signal
November 2022
Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
Many dementias are propagated through the spread of "prion-like" misfolded proteins. This includes prion diseases themselves (such as Creutzfeldt-Jakob disease) and Alzheimer's disease (AD), for which no treatments are available to slow or stop progression. The M acetylcholine muscarinic receptor (M receptor) is abundant in the brain, and its activity promotes cognitive function in preclinical models and in patients with AD.
View Article and Find Full Text PDFBioorg Med Chem Lett
July 2018
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!