Bleach (HOCl) is a powerful oxidant that kills bacteria in part by causing protein aggregation. It inactivates ATP-dependent chaperones, rendering cellular proteins mostly dependent on holdases. Here we identified Escherichia coli CnoX (YbbN) as a folding factor that, when activated by bleach via chlorination, functions as an efficient holdase, protecting the substrates of the major folding systems GroEL/ES and DnaK/J/GrpE. Remarkably, CnoX uniquely combines this function with the ability to prevent the irreversible oxidation of its substrates. This dual activity makes CnoX the founding member of a family of proteins, the "chaperedoxins." Because CnoX displays a thioredoxin fold and a tetratricopeptide (TPR) domain, two structural motifs conserved in all organisms, this investigation sets the stage for the discovery of additional chaperedoxins in bacteria and eukaryotes that could cooperate with proteins from both the Hsp60 and Hsp70 families.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2018.04.002 | DOI Listing |
Nature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.
Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, China.
Purpose: PLB1004, developed by Beijing Avistone Biotechnology Co., Ltd., is a safe, highly selective, and efficient irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) employed in treating non-small-cell-lung-cancer (NSCLC).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America.
Human neutrophils are abundant, short-lived leukocytes that turn over at a rate of approximately 1011 cells/day via a constitutive apoptosis program. Certain growth factors, inflammatory mediators and infectious agents can delay apoptosis or induce neutrophils to die by other mechanisms. Nonetheless, a large body of data demonstrates that apoptosis of untreated neutrophils typically ensues within 24 hours of cell isolation and in vitro culture.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Retinal degenerative diseases lead to irreversible vision loss due to photoreceptor cell death, driven by complex genetic and environmental factors. Ceramide, a sphingolipid metabolite, emerges as a critical mediator in the apoptotic cascade associated with retinal degeneration. Our previous work demonstrated L-Cycloserine's ability to protect photoreceptor-derived cells from oxidative stress by inhibiting the de novo ceramide pathway and thus prompting further investigation on its effect in the in vivo retina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!