Renal ischemia-reperfusion injury (IRI), an important cause of acute kidney injury (AKI), causes increased renal tubular injury and microvascular inflammation. 1,[Formula: see text]2,[Formula: see text]3,[Formula: see text]4,[Formula: see text]6-penta-O-galloyl-[Formula: see text]-D-glucose (PGG) from Galla rhois has anticancer, anti-oxidation and angiogenesis effects. We examined protective effects of PGG on IRI-induced acute AKI. Clamping both renal arteries for 45[Formula: see text]min induced isechemia and then reperfusion. Treatment with PGG (10[Formula: see text]mg/kg/day and 50[Formula: see text]mg/kg/day for four days) significantly ameliorated urine volume, urine osmolality, creatinine clearance (Ccr) and blood urea nitrogen (BUN). In addition, PGG increased aquaporine 1/2/3, Na[Formula: see text]-K[Formula: see text]-ATPase and urea transporter (UT-B) and decreased ICAM-1, MCP-1, and HMGB-1 expression. In this histopathologic study, PGG improved glomerular and tubular damage. Immunohistochemistry results showed that PGG increased aquaporine 1/2, and Na[Formula: see text]-K[Formula: see text] ATPase and decreased ICAM-1 expression. These findings suggest that PGG ameliorates tubular injury including tubular dysfunction and microvascular inflammation in IRI-induced AKI rats.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0192415X18500416DOI Listing

Publication Analysis

Top Keywords

tubular injury
12
microvascular inflammation
12
1[formula text]2[formula
8
text]2[formula text]3[formula
8
text]3[formula text]4[formula
8
galla rhois
8
renal tubular
8
injury microvascular
8
acute kidney
8
kidney injury
8

Similar Publications

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

: Colorectal cancer is the third most common type of cancer in men and women. With advancements in technology, minimally invasive treatment options have become increasingly prominent in colorectal cancer surgery. This study aimed to compare the increased intra-abdominal pressure in laparoscopic colon and rectal surgery with open procedures using kidney injury molecule-1 (KIM-1) secreted from renal tubules.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a major but often underestimated risk factor for the development of chronic kidney disease (CKD). Exploring innovative approaches to prevent this progression is critical. Intermittent fasting (IF), recognized for its metabolic and anti-inflammatory benefits, may offer protective effects in this context.

View Article and Find Full Text PDF

Exploring Potential Complement Modulation Strategies for Ischemia-Reperfusion Injury in Kidney Transplantation.

Antioxidants (Basel)

January 2025

Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.

The complement system plays a crucial role in regulating the inflammatory responses in kidney transplantation, potentially contributing to early decline in kidney function. Ischemia-reperfusion injury (IRI) is among the factors affecting graft outcomes and a primary contributor to delayed graft function. Complement activation, particularly the alternative pathway, participates in the pathogenesis of IRI, involving all kidney compartments.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) progresses through mechanisms involving inflammation, fibrosis, and oxidative stress, leading to the gradual structural and functional deterioration of the kidneys. Tormentic acid (TA), a triterpenoid compound with known anti-inflammatory and antioxidant properties, shows significant potential in counteracting these pathological processes. This study explored the protective role of TA in a unilateral ureteral obstruction (UUO)-induced CKD model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!