CRISPR-Cas9 has been explored as a transformative genome engineering tool for many eukaryotic organisms. However, its utilization in bacteria remains limited and ineffective. This chapter, taking Clostridium beijerinckii as an example, describes the use of Streptococcus pyogenes CRISPR-Cas9 system guided by the single chimeric guide RNA (gRNA) for diverse genome-editing purposes, including chromosomal gene deletion, integration, single nucleotide modification, as well as "clean" mutant selection. The general principle is to use CRISPR-Cas9 as an efficient selection tool for the edited mutant (whose CRISPR-Cas9 target site has been disrupted through a homologous recombination event and thus can survive selection) against? the wild type background cells. This protocol is broadly applicable to other microorganisms for genome-editing purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7795-6_17 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:
J Dairy Sci
December 2024
Department of Dairy and Food Sciences, South Dakota State University, Brookings, South Dakota 57007; School of Animal Sciences, Virginia Tech, Blacksburg, VA. Electronic address:
The objective of this study was to evaluate the effects of a rumen-derived direct-fed microbial (DFM) product on performance, blood biomarkers, ruminal fermentation, and bacterial abundance in dairy cows during the transition period until 100 DIM. Fifty-six Holstein cows were enrolled in a randomized complete block design from -21 to 100 DIM. Cows were blocked based on expected calving date, parity, and previous lactation milk yield for multiparous or genetic merit for primiparous cows.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Leiden Institute of Chemistry, Leiden University, PO box 9502, 2300 RA Leiden, The Netherlands.
A relatively unexplored energy source in synthetic cells is transmembrane electron transport, which like proton and ion transport can be light driven. Here, synthetic cells, called nanoreactors, are engineered for compartmentalized, semiartificial photosynthetic H production by a [FeFe]-hydrogenase (Hase). Transmembrane electron transfer into the nanoreactor was enabled by MtrCAB, a multiheme transmembrane protein from MR-1.
View Article and Find Full Text PDFAnim Nutr
December 2024
Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Newborn goat kids exposed to environmental stress are susceptible to diarrhea due to immature intestinal functions and undeveloped gut microbiota. Butyrate-producing bacteria as next generation probiotics benefit the maintenance of intestinal health, but the mode of regulation is still unclear. Herein, a novel butyrate-producing strain was isolated from sheep rumen and identified as () , thereafter goat kids were treated with to elucidate its regulatory mechanisms on diarrhea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!