AI Article Synopsis

  • CRISPR-Cas9 is a powerful genome editing tool primarily used in eukaryotes but has had limited success in bacteria.
  • This chapter focuses on Clostridium beijerinckii and describes the application of the Streptococcus pyogenes CRISPR-Cas9 system with a single chimeric guide RNA for various genome-editing techniques.
  • The approach involves using CRISPR-Cas9 to select edited mutants that survive due to disrupted target sites, making it a useful method for editing genomes in other microorganisms as well.

Article Abstract

CRISPR-Cas9 has been explored as a transformative genome engineering tool for many eukaryotic organisms. However, its utilization in bacteria remains limited and ineffective. This chapter, taking Clostridium beijerinckii as an example, describes the use of Streptococcus pyogenes CRISPR-Cas9 system guided by the single chimeric guide RNA (gRNA) for diverse genome-editing purposes, including chromosomal gene deletion, integration, single nucleotide modification, as well as "clean" mutant selection. The general principle is to use CRISPR-Cas9 as an efficient selection tool for the edited mutant (whose CRISPR-Cas9 target site has been disrupted through a homologous recombination event and thus can survive selection) against? the wild type background cells. This protocol is broadly applicable to other microorganisms for genome-editing purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7795-6_17DOI Listing

Publication Analysis

Top Keywords

clostridium beijerinckii
8
beijerinckii example
8
genome-editing purposes
8
crispr-cas9
5
bacterial genome
4
genome editing
4
editing crispr-cas9
4
crispr-cas9 clostridium
4
example crispr-cas9
4
crispr-cas9 explored
4

Similar Publications

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

Enhanced butanol tolerance and production from puerariae slag hydrolysate by Clostridium beijerinckii through metabolic engineering and process regulation strategies.

Bioresour Technol

January 2025

College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:

Article Synopsis
  • Butanol is identified as a valuable second-generation biomass energy source, but its production faces challenges like toxicity to fermentation strains and high feedstock costs.
  • The study focuses on enhancing butanol tolerance and production in the strain Clostridium beijerinckii D9 through metabolic engineering, leading to the development of a more efficient strain, D9/pykA.
  • Results showed that the new strain achieved a significant increase in butanol and total solvent production compared to the original strain, with optimal conditions boosting yield and revealing mechanisms to improve fermentation efficiency.
View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of a rumen-derived direct-fed microbial (DFM) product on performance, blood biomarkers, ruminal fermentation, and bacterial abundance in dairy cows during the transition period until 100 DIM. Fifty-six Holstein cows were enrolled in a randomized complete block design from -21 to 100 DIM. Cows were blocked based on expected calving date, parity, and previous lactation milk yield for multiparous or genetic merit for primiparous cows.

View Article and Find Full Text PDF

Semiartificial Photosynthetic Nanoreactors for H Generation.

J Am Chem Soc

December 2024

Leiden Institute of Chemistry, Leiden University, PO box 9502, 2300 RA Leiden, The Netherlands.

A relatively unexplored energy source in synthetic cells is transmembrane electron transport, which like proton and ion transport can be light driven. Here, synthetic cells, called nanoreactors, are engineered for compartmentalized, semiartificial photosynthetic H production by a [FeFe]-hydrogenase (Hase). Transmembrane electron transfer into the nanoreactor was enabled by MtrCAB, a multiheme transmembrane protein from MR-1.

View Article and Find Full Text PDF

Newborn goat kids exposed to environmental stress are susceptible to diarrhea due to immature intestinal functions and undeveloped gut microbiota. Butyrate-producing bacteria as next generation probiotics benefit the maintenance of intestinal health, but the mode of regulation is still unclear. Herein, a novel butyrate-producing strain was isolated from sheep rumen and identified as () , thereafter goat kids were treated with to elucidate its regulatory mechanisms on diarrhea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!