Heterogeneity of the diverse aerobic sludge granules self-cultivated in a membrane bioreactor with enhanced internal circulation.

Bioresour Technol

School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangzhou 510006, PR China.

Published: September 2018

The present work revealed the heterogeneity of the sludge granules formed in a membrane bioreactor with enhanced internal circulation, and also contributed to better understanding of their forming mechanisms. By continuously carrying out an experiment lasting for more than 3 months with the floc sludge from a local municipal wastewater treatment plant as inoculation sludge, diverse aerobic sludge granules were found to be successfully self-cultivated within the reactor. The results of scanning electron microscopy, fluorescence microscope and high-throughput sequencing measurement indicated that the obtained diverse granules exhibited quite obvious heterogeneity in their basic physico-chemical and microbial properties, and filamentous bacteria actually acted as a main skeleton to keep the self-cultivated sludge granules stable in both their structure and morphology. Furthermore, stable and high COD and TN removal achieved, over 85% and 60%, respectively, which confirmed its usefulness in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.05.004DOI Listing

Publication Analysis

Top Keywords

sludge granules
16
diverse aerobic
8
aerobic sludge
8
granules self-cultivated
8
membrane bioreactor
8
bioreactor enhanced
8
enhanced internal
8
internal circulation
8
wastewater treatment
8
sludge
6

Similar Publications

Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.

View Article and Find Full Text PDF

With the widespread use of typical antibiotics such as sulfamethazine (SMT), it leads to their accumulation in the environment, increasing the risk of the spread of antibiotic resistance genes (ARGs). Aerobic granular sludge (AGS) has shown great potential in treating antibiotic wastewater. However, the long cultivation period of AGS, the easy disintegration of particles and the poor stability of degradation efficiency for highly concentrated antibiotic wastewater are still urgent problems that need to be solved, and it is important to explore the migration and changes of ARGs and microbial diversity in AGS systems.

View Article and Find Full Text PDF

Comprehensive performance of a new-type hybrid membrane bioreactor applied to mainstream anammox process.

J Environ Manage

December 2024

Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

The new-type submerged granular sludge membrane bioreactor (S-GSMBR) was constructed by installing a membrane module inside an upflow anaerobic sludge blanket. S-GSMBR achieved the fast start-up (47 d) and long-term stable operation (133 d) of mainstream Anammox process as well as the effective control of membrane fouling. The maximum nitrogen removal rate and efficiency were 0.

View Article and Find Full Text PDF

Effective organic matter removal via bio-adsorption prior to anammox process and utilization of carbon-rich sludge.

J Environ Manage

December 2024

Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.

Excessive organic matter in the anaerobic ammonia oxidation (Anammox) leads to the growth of a large number of heterotrophic bacteria, which disrupts the anaerobic ammonia oxidation. The adsorption-anaerobic ammonia oxidation process can effectively reduce excessive organic matter, capturing it instead of consuming it, which is a sustainable development technology. In this study, utilizing the excellent adsorption performance of aerobic granular sludge (AGS), an adsorption-regeneration process was employed to remove organic matter at the front end of the Anammox process through bio-adsorption in an artificial simulated domestic sewage environment, and it was successfully used for denitrification.

View Article and Find Full Text PDF

Direct development of microalgae-bacterial granular sludge system by seeding pre-made microalgae-dewatered sludge granules: Performance and mechanism analysis.

Environ Res

December 2024

School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada.

Microalgae-bacterial granular sludge (MBGS) process has great potential in achieving carbon neutrality and energy neutrality, but rapidly cultivating MBGS remains challenging. To address this challenge, this study proposes a new strategy to develop MBGS systems using pre-made granules from microalgae and dewatered sludge. The results indicate that using pre-made microalgae-dewatered sludge granules (M-DSG) as inoculants can directly develop MBGS system, with M-DSG maintaining a relatively stable granular structure, and ultimately achieving pollutant removal efficiencies of 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!