Role of mitogen-activated protein kinase signaling in the pathogenesis of dengue virus infection.

Cell Signal

Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. Electronic address:

Published: August 2018

Dengue virus (DENV) infection is a disease that is endemic to many parts of the world, and its increasing prevalence ranks it among the diseases considered to be a significant threat to public health. The clinical manifestations of DENV infection range from mild dengue fever (DF) to more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased proinflammatory cytokines and vascular permeability, both of which cause organ injury, are the hallmarks of severe dengue disease. Signs of liver injury were observed in studies using hepatic cell lines, mouse models, and autopsy specimens from DENV-infected patients, and these signs substantiated the effects of inflammatory responses and hepatic cell apoptosis. Mitogen-activated protein kinases (MAPK) are involved in inflammatory responses and cellular stress during viral infections. The roles of MAPK signaling in DENV infection were reviewed, and published data indicate MAPK signaling to be involved in inflammatory responses and hepatic cell apoptosis in both in vitro cultures and in vivo models. Modulation of MAPK signaling ameliorates the inflammatory responses and hepatic cell apoptosis in DENV infection. This accumulation of published data relative to the role of MAPK signaling in inflammatory responses and cell apoptosis in DENV infection is elucidatory, and may help to accelerate the development of novel or repositioned therapies to treat this unpredictable and often debilitating disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2018.05.002DOI Listing

Publication Analysis

Top Keywords

denv infection
20
inflammatory responses
20
hepatic cell
16
cell apoptosis
16
mapk signaling
16
responses hepatic
12
mitogen-activated protein
8
dengue virus
8
severe dengue
8
involved inflammatory
8

Similar Publications

Comparison of clinical and virological features in pediatric and adult dengue cases at Insein General Hospital during Myanmar's 2022 dengue season.

Trop Med Health

January 2025

Department of Medical Research, Ministry of Health, No.5, Ziwaka Road, Dagon Township, Yangon, 11191, Myanmar.

Background: Myanmar is one of the countries in Southeast Asia where serious dengue outbreaks occur and Yangon is among the regions with the highest number of cases in the country. Many infections including dengue are common in Yangon during the rainy season, and co-infections may also occur. Adults are more likely than children to experience co-infections of dengue and other diseases.

View Article and Find Full Text PDF

Dengue, caused by the dengue virus (DENV), poses a significant global health challenge. Effective vaccines and treatments for dengue are lacking due to gaps in understanding its pathogenesis and mechanisms in severe cases. This study investigates the role of immunoglobulin E (IgE) in dengue, focusing on its potential association with virus neutralization and antibody-dependent enhancement (ADE) in DENV replication.

View Article and Find Full Text PDF

Examining the co-circulation of various serotypes and finding serotypes linked to illness severity were the main objectives of this study, which sought to investigate the epidemiology and serotype distribution of dengue in Haryana, North India. The cross-sectional study, which was carried out in a tertiary care hospital between September 2021 and April 2023, enrolled participants who met WHO criteria for probable dengue fever. Blood samples underwent molecular and serological diagnostics, such as immunochromatographic testing, VIDAS® Dengue NS1 assays, and TRUPCR® Dengue Detection and serotyping kits, in addition to the collection of clinical and demographic data.

View Article and Find Full Text PDF

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

Dengue Virus Replicative-Form dsRNA Is Recognized by Both RIG-I and MDA5 to Activate Innate Immunity.

J Med Virol

February 2025

CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!