AI Article Synopsis

  • Wastewater can be a viable irrigation source in agriculture, but risks like heavy metal accumulation in plants, especially in water-scarce areas, need serious consideration.
  • The study examined the effects of treated and untreated wastewater on the roots of different scented Rosa species, noting that while some were less affected, others showed significant structural changes due to the chemical quality of the irrigation water.
  • The results indicated that the thickness of various root tissues differed between treated and untreated wastewater, with substantial changes observed by the second year, highlighting the need for cautious use of wastewater in farming.

Article Abstract

Wastewater is an alternative to traditional sources of renewable irrigation water in agriculture, particularly in water-scarce regions. However, the possible risks due to heavy metals accumulation in plant tissues are often overlooked by producers. The present study aimed to identify heavy metals-induced structural modifications to roots of scented Rosa species that were irrigated with water of marginal quality. The chemical and mineral contents from the experimental irrigation canal water (control) and treated wastewater were below the limits recommended by the Pakistan Environmental Protection Agency (Pak-EPA) for medicinal plants. The experimentally untreated wastewater contained electrical conductivity (EC), chemical oxygen demand (COD), biological oxygen demand (BOD), and heavy metals (Co, Cu, Cd, Pb) that were above the recommended limits. The responses by wastewater-treated Rosa species (Rosa damascena, R. bourboniana, R. Gruss-an-Teplitz, and R. centifolia) were evaluated. The experimental data revealed that treated wastewater significantly increased the thickness of collenchyma (cortex and pith) and parenchyma tissues (vascular bundle, xylem, and phloem) of R. Gruss-an-Teplitz. Root dermal tissues (epidermis) of R. bourboniana also responded to treated wastewater. R. damascena and R. centifolia were the least affected species, under the experimental irrigation conditions. Collenchyma and dermal tissues were thicker in R. damascena and R. Gruss-an-Teplitz under untreated wastewater conditions. In parenchyma tissues, vascular bundles were thicker in R. damascena in untreated wastewater conditions, while the xylem and phloem of R. Gruss-an-Teplitz were thicker where treated wastewater was applied. In tissues other than the vascular bundle, the differences in anatomical metrics due to the experimental irrigation treatments were greater during the second year of the experiment than in the first year. The contents of metals other than chromium in the roots and stems of roses were below the WHO limits, under all of the experimental irrigation conditions. Rosa centifolia contained higher heavy metals content than the other experimental species, and heavy metals content was associated with anatomical changes due to the treatments. We conclude that, under conditions of wastewater irrigation, R. Gruss-an-Teplitz was highly resistant; R. damascena was moderately resistant while R. bourboniana and R. centifolia were the most susceptible to irrigation with marginal quality water. This is the first report of plant tissue responses to wastewater irrigation by the experimental species. Regarding the accumulation of heavy metals in rose plant tissues, the results confirm that untreated wastewater must be treated to grow Rosa species where water is scarce.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.05.003DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
rosa species
16
experimental irrigation
16
treated wastewater
16
untreated wastewater
16
marginal quality
12
tissues vascular
12
wastewater
11
species irrigated
8
quality water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!