Stereotactic body radiotherapy (SBRT) is an emerging non-invasive treatment in the management of ventricular tachycardia (VT). We report here an intensive care patient suffering from an electrical storm due to incessant VT, unresponsive to catheter ablation and anti-arrhythmic drugs, showing an immediate and durable response to electrophysiology-guided cardiac SBRT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2018.04.025DOI Listing

Publication Analysis

Top Keywords

electrical storm
8
rescue procedure
4
procedure electrical
4
storm robotic
4
robotic non-invasive
4
non-invasive cardiac
4
cardiac radio-ablation
4
radio-ablation stereotactic
4
stereotactic body
4
body radiotherapy
4

Similar Publications

Can ICD Electrograms Help Ventricular Tachycardia Ablation?: Results From the Multicenter Randomized AIDEG-VTA Trial.

J Am Coll Cardiol

November 2024

Electrophysiology Laboratory and Arrhythmia Unit, Centro Integral de Enfermedades Cardiovasculares, Hospital Monteprincipe, Grupo HM Hospitales, Madrid, Spain. Electronic address:

Background: The results of ablation of sustained monomorphic ventricular tachycardia (SMVT) are suboptimal. For many patients with implantable cardioverter-defibrillators (ICDs), ICD electrograms (ICD-EGs) provide the only available information on SMVT. ICD-EGs have the ability to distinguish morphologically distinct SMVT and can be used for pace mapping.

View Article and Find Full Text PDF

Background: Charcot-Marie-Tooth is the most common inherited neuromuscular disorder. Rarely, it can be associated with heart failure and various arrhythmic disturbances. This case illustrates the challenges of making decisions to prevent sudden cardiac death in a patient with Charcot-Marie-Tooth disease.

View Article and Find Full Text PDF

Catheter ablation-based management strategies for the drug-refractory electrical storm (ES) have been proven to abolish acute ventricular arrhythmic episodes and improve long-term outcomes. However, this effect is highly influenced by multiple independently acting factors, which, if identified and addressed, may allow a more tailored management to each particular case to improve results. This review synthesizes existing evidence concerning ES outcome predictors of patients undergoing ablation and introduces the role of novel scoring algorithms to refine risk stratification.

View Article and Find Full Text PDF

Self-augmented catabolism mediated by Se/Fe co-doped bioceramics boosts ROS storm for highly efficient antitumor therapy of bone scaffolds.

Colloids Surf B Biointerfaces

April 2025

Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:

The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.

View Article and Find Full Text PDF

Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!