Raman spectroscopy (RS) has demonstrated great potential for in vivo cancer screening; however, the biophysical changes that occur for specific diagnoses remain unclear. We recently developed an inverse biophysical skin cancer model to address this issue. Here, we presented the first demonstration of in vivo melanoma and nonmelanoma skin cancer (NMSC) detection based on this model. We fit the model to our previous clinical dataset and extracted the concentration of eight Raman active components in 100 lesions in 65 patients diagnosed with malignant melanoma (MM), dysplastic nevi (DN), basal cell carcinoma, squamous cell carcinoma, and actinic keratosis. We then used logistic regression and leave-one-lesion-out cross validation to determine the diagnostically relevant model components. Our results showed that the biophysical model captures the diagnostic power of the previously used statistical classification model while also providing the skin's biophysical composition. In addition, collagen and triolein were the most relevant biomarkers to represent the spectral variances between MM and DN, and between NMSC and normal tissue. Our work demonstrates the ability of RS to reveal the biophysical basis for accurate diagnosis of different skin cancers, which may eventually lead to a reduction in the number of unnecessary excisional skin biopsies performed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.23.5.057002 | DOI Listing |
Sci Rep
January 2025
Department of Dermatology, University of Maryland School of Medicine, 419 West Redwood Street, Suite 235, Baltimore, MD, 21201, USA.
Erythroderma is a severe and heterogeneous inflammatory skin condition with little guidance on the approach to management in cases of unknown etiology. To guide therapeutic selection, we sought to create an immunophenotyping platform able to identify aberrant cell populations and cytokines in subtypes of erythroderma. We performed high-parameter flow cytometry on peripheral blood mononuclear cells (PBMCs) and whole blood of a patient with refractory idiopathic erythroderma, erythrodermic patients with Sézary syndrome and pityriasis rubra pilaris, and healthy controls.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.
Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.
View Article and Find Full Text PDFNat Commun
January 2025
Neogene Therapeutics, A member of the AstraZeneca Group, Amsterdam, The Netherlands.
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.
View Article and Find Full Text PDFNat Commun
January 2025
National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.
Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.
View Article and Find Full Text PDFAntiviral Res
January 2025
Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; Faculty of Science and Technology, University of Canberra, Australia. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!