In silico docking and molecular dynamics simulation of 3-dehydroquinate synthase (DHQS) from Mycobacterium tuberculosis.

J Mol Model

Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.

Published: May 2018

The shikimate pathway is as an attractive target because it is present in bacteria, algae, fungi, and plants but does not occur in mammals. In Mycobacterium tuberculosis (MTB), the shikimate pathway is integral to the biosynthesis of naphthoquinones, menaquinones, and mycobactin. In these study, novel inhibitors of 3-dehydroquinate synthase (DHQS), an enzyme that catalyzes the second step of the shikimate pathway in MTB, were determined. 12,165 compounds were selected from two public databases through virtual screening and molecular docking analysis using PyRx 8.0 and Autodock 4.2, respectively. A total of 18 compounds with the best binding energies (-13.23 to -8.22 kcal/mol) were then selected and screened for absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, and nine of those compounds were found to satisfy all of the ADME and toxicity criteria. Among those nine, the three compounds-ZINC633887 (binding energy = -10.29 kcal/mol), ZINC08983432 (-9.34 kcal/mol), and PubChem73393 (-8.61 kcal/mol)-with the best binding energies were further selected for molecular dynamics (MD) simulation analysis. The results of the 50-ns MD simulations showed that the two compounds ZINC633887 and PubChem73393 formed stable complexes with DHQS and that the structures of those two ligands remained largely unchanged at the ligand-binding site during the simulations. These two compounds identified through docking and MD simulation are potential candidates for the treatment of TB, and should undergo validation in vivo and in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3637-4DOI Listing

Publication Analysis

Top Keywords

shikimate pathway
12
molecular dynamics
8
dynamics simulation
8
3-dehydroquinate synthase
8
synthase dhqs
8
mycobacterium tuberculosis
8
best binding
8
binding energies
8
simulations compounds
8
compounds
5

Similar Publications

The plant Polygonum capitatum (P. capitatum) contains a variety of flavonoids that are distributed differently among different parts. Nevertheless, differentially expressed genes (DEGs) associated with this heterogeneous distribution have not been identified.

View Article and Find Full Text PDF

Computational Study on the Reaction Mechanism of 5-Enolpyruvylshikimate-3-phosphate Synthase from Nicotiana Tabacum.

ChemistryOpen

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the conversion of 5-enolpyruvate (PEP) and shikimic acid phosphate (S3P) to 5-enolpyruvylshikimic acid-3-phosphate (EPSP), releasing inorganic phosphate. This reaction is the sixth step of the shikimate pathway, which is a metabolic pathway used by microorganisms and plants for the biosynthesis of aromatic amino acids and folates but not in mammals. In the present study, the detailed reaction mechanism of EPSPS from Nicotiana tabacum (NtEPSPS) is revealed by quantum chemical calculations with the cluster approach.

View Article and Find Full Text PDF

Identification of novel 3-dehydroquinate dehydratase (DHQD) inhibitors for anti-tuberculosis activity: insights from virtual screening, molecular docking, and dynamics simulations.

In Silico Pharmacol

January 2025

Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006 South Africa.

Tuberculosis (TB) remains a pressing global health concern, causing substantial mortality and morbidity despite existing drugs and vaccines. The escalating challenge of drug-resistant TB underscores the critical need for novel medications. This study focuses on the enzyme 3-hydroquinate dehydratase (DHQD) in the shikimate pathway of (Mtb), essential for Mtb growth.

View Article and Find Full Text PDF

Bamboo vinegar powder: Unveiling its antioxidant and antifungal efficacy through bioactive compound analysis and mechanistic insights.

Food Chem

January 2025

Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, Fujian, China; Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, Fujian, China. Electronic address:

Bamboo vinegar has been applied in livestock and fisheries as food additives. In this study, the antioxidant and antifungal properties of bamboo vinegar powder extract (BVPE) and its bioactive compounds were explored. BVPE exhibited significant free radical scavenging activity against DPPH and ABTS radicals, along with notable antifungal effects against Aspergillus terreus and Paecilomyces variotii.

View Article and Find Full Text PDF

Improved biosynthesis of tyrosol by epigenetic modification-based regulation and metabolic engineering in Saccharomyces cerevisiae.

J Biotechnol

December 2024

Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Article Synopsis
  • Aromatic amino acids, like tyrosol, are important for industries such as food and pharmaceuticals, but current production methods have limitations.
  • The study explored how to boost tyrosol production using epigenetic modifications and optimizing its biosynthetic pathway.
  • Key modifications included overexpressing specific genes, deleting others, and ultimately developing a strain that produced significantly more tyrosol (954.69 mg/L), marking a 61.7-fold increase in yield.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!