Glycerol, which is an inevitable by-product of biodiesel production, is an ideal carbon source for the production of carotenoids due to its low price, good availability and chemically reduced status, which results in a low requirement for additional reducing equivalents. In this study, an alternative carbon-utilization pathway was constructed in Escherichia coli to enable more efficient β-carotene production from glycerol. An aldehyde reductase gene (alrd) and an aldehyde dehydrogenase gene (aldH) from Ralstonia eutropha H16 were integrated into the E. coli chromosome to form a novel glycerol-utilization pathway. The β-carotene specific production value was increased by 50% after the introduction of alrd and aldH. It was found that the glycerol kinase gene (garK), alrd and aldH were the bottleneck of the alternative glycerol metabolic pathway, and modulation of garK gene with an mRS library further increased the β-carotene specific production value by 13%. Finally, co-modulation of genes in the introduced aldH-alrd operon led to 86% more of β-carotene specific production value than that of the strain without the alternative glycerol-utilization pathway and the glycerol-utilization rate was also increased. In this work, β-carotene production of E. coli was significantly improved by constructing and optimizing an alternative glycerol-utilization pathway. This strategy can potentially be used to improve the production of other isoprenoids using glycerol as a cheap and abundant substrate, and therefore has industrial relevance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-018-2045-1 | DOI Listing |
mBio
January 2025
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.
The mechanisms controlling (Mtb) replication and survival inside its human host remain ill-defined. Phagosome acidification and nutrient deprivation are common mechanisms used by macrophages to restrict the replication of intracellular bacteria. Mtb stops replicating at mildly acidic pH (
mSystems
December 2024
MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
Microbial transformation is a favored approach for environmental remediation. However, the effectiveness of microbial remediation has been limited by the lack of chassis cells with satisfactory contaminant degradation performance. B6-2, with a wide substrate spectrum and high solvent tolerance, is a chassis strain with great potential for application in environmental remediation.
View Article and Find Full Text PDFBioresour Technol
November 2024
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China. Electronic address:
Developing utilization technologies for biomass resources, exploring their applications in the fields of energy and chemical engineering, holds significant importance for promoting sustainable development and constructing a green, low-carbon society. In this study, we designed a non-natural in vitro multi-enzyme system for converting glycerol and CO into L-aspartic acid (L-Asp). The coupled system utilized eight enzymes, including alditol oxidase (ALDO), catalase-peroxidase (CAT), lactaldehyde dehydrogenase (ALDH), glycerate 2-kinase (GK), phosphopyruvate hydratase (PPH), phosphoenolpyruvate carboxylase (PPC), L-aspartate dehydrogenase (ASPD), and polyphosphate kinase (PPK), to convert the raw materials into L-Asp in one-pot coupled with NADH and ATP regeneration.
View Article and Find Full Text PDFFront Microbiol
June 2024
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
While poly (3-hydroxybutyrate) (PHB) holds promise as a bioplastic, its commercial utilization has been hampered by the high cost of raw materials. However, glycerol emerges as a viable feedstock for PHB production, offering a sustainable production approach and substantial cost reduction potential. Glycerol stands out as a promising feedstock for PHB production, offering a pathway toward sustainable manufacturing and considerable cost savings.
View Article and Find Full Text PDFFEMS Yeast Res
January 2024
School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!