Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030705 | PMC |
http://dx.doi.org/10.15252/embr.201745067 | DOI Listing |
PLoS One
January 2025
College of Natural and Computational Sciences, Hawai'i Pacific University, Honolulu, HI, United States of America.
Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.
View Article and Find Full Text PDFTurk J Pediatr
December 2024
Division of Pediatric Nephrology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Türkiye.
Background: Idiopathic nephrotic syndrome (NS) is the most prevalent glomerular disease in children. Heat shock protein 70 (HSP70) is synthesized in response to diverse stress factors like infections and oxidative stress. We aimed to evaluate serum and urine levels of HSP70 in children with steroid-sensitive nephrotic syndrome (SSNS) and to assess changes in HSP70 levels with prednisolone treatment.
View Article and Find Full Text PDFClin Exp Emerg Med
January 2025
Department of Emergency Medicine, Chungbuk National University Hospital, 776, Sunhwan-ro, Seowon-gu, Cheongju, Republic of Korea.
Objective: The study aims to investigate the long-term impacts of traumatic brain injury (TBI) on neuroinflammation and neuronal apoptosis in pediatric and adult mice, specifically focusing on how age-at-injury influences these processes.
Methods: Controlled cortical impact (CCI) was used to induce TBI in pediatric (21-25 days old) and adult (8-12 weeks old) C57Bl/6 male mice. Neuroinflammation was evaluated through immunoreactivity for Iba-1 and GFAP, while apoptosis was assessed using markers such as Bax, Bcl- 2, and pro-caspase-3.
Nat Commun
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!