Exponentially growing bacteria in a well-mixed planktonic culture are generally assumed to be physiologically and phenotypically uniform and distinct from their genetically identical counterparts living in biofilms. Using a combination of high spatiotemporal microscopy and a bacterial tracking algorithm, in this study, we showed that planktonic cells of differently attached to surfaces even when they remained in the exponential phase. We consistently observed that fast- and slow-attaching phenotypes coexist in planktonic cells, regardless of their growth phase. Furthermore, we found that (i) the distinct attaching phenotypes of planktonic cells resulted from the differential production of Psl and (ii) the RsmYZ/RsmA signaling pathway mainly regulated the differential production of Psl. Our results indicate that the differential production of Psl in plays a significant role in biofilm development and formation. The attachment of planktonic cells to surfaces is the first and most crucial step in biofilm formation. In this paper, we show that planktonic cells of differently attach to surfaces. Typically, in the later exponential phase, approximately 80% of the cells can quickly attach to surfaces within 15 min, whereas approximately 20% of the cells slowly attach to surfaces, which greatly affects the initial stage of biofilm formation in the presence of flows. This is because fast-attaching cells are more likely to attach on surfaces to form microcolonies, whereas slow-attaching cells are more likely to remain in the mobile phase. This scenario is different from the previous understanding of biofilm formation in the initial stage, in which planktonic cells were thought to uniformly attach to surfaces. Most notably, the results of this study show that the different attachment manner of planktonic cells to surfaces affects the subsequent stages of biofilm formation. This research highlights that the phenotypic variations in planktonic cells plays significant roles in various stages of biofilm formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029103PMC
http://dx.doi.org/10.1128/AEM.00700-18DOI Listing

Publication Analysis

Top Keywords

planktonic cells
36
biofilm formation
20
attach surfaces
20
differential production
16
production psl
16
cells
13
planktonic
10
cells differently
8
surfaces
8
exponential phase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!