Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in , enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, , the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering. Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029104 | PMC |
http://dx.doi.org/10.1128/AEM.00603-18 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Lanzhou University Second Hospital, 82 Cui-Ying-Men, Lanzhou, 730030, PR China.
Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.
Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.
BMJ Open Diabetes Res Care
January 2025
The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
Introduction: Type 2 diabetes (T2D) is a chronic condition characterized by high levels of blood glucose resulting from the inefficiency of insulin. This study aims to explore the mechanism of TGFB-induced factor homeobox 1 (TGIF1) in the glycolipid metabolism of mice with T2D.
Research Design And Methods: Mice with T2D were induced by high-fat diet and low-dose streptozotocin (STZ) injection.
Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Low temperature severely limits the growth, yield, and geographical distribution of maize (Zea mays L.). How maize adapts to cold climates remains largely unclear.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!