Tissue adhesive, rapid forming, and sprayable ECM hydrogel via recombinant tyrosinase crosslinking.

Biomaterials

Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742, Republic of Korea; Institute of Bioengineering, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 151-742, Republic of Korea. Electronic address:

Published: September 2018

We report on a tissue adhesive hydrogel based on novel recombinant tyrosinase mediated crosslinking. The adhesive hydrogels were fabricated by the site-directed coupling of tyramine-conjugated hyaluronic acid (HA_t, 1% w/v) and gelatin (3% w/v) (HG_gel) with novel tyrosinase derived from Streptomyces avermitilis (SA_Ty). The enzyme-based crosslinking by SA_Ty was fast, with less than 50 s for complete gelation, and the SA_Ty based crosslinking enhanced the physical properties and adhesive strength of the hydrogel significantly with the native tissue samples. Furthermore, by optimizing the injection conditions, we tailored the enzyme-based crosslinking hydrogels to be injectable and sprayable with a medical syringe and commercial airbrush nozzle, respectively. An in vivo analysis of the adhesive hydrogel showed a negligible immune reaction. In this study, demonstrate that the novel enzyme-based crosslinking hydrogel has a robust potential in tissue engineering and regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2018.04.057DOI Listing

Publication Analysis

Top Keywords

enzyme-based crosslinking
12
tissue adhesive
8
recombinant tyrosinase
8
adhesive hydrogel
8
crosslinking
6
hydrogel
5
tissue
4
adhesive rapid
4
rapid forming
4
forming sprayable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!