A new nanocomposite (SCZ), microspherical carbon (SC) loaded with nanoscale zerovalent iron (ZVI), was fabricated to efficiently remove hexavalent chromium (Cr(VI)) in water. Therein, SC was derived from waste carton through hydrothermal treatment after pretreatment of removing hemicellulose and lignin, and the optimal hydrothermal conditions (200 °C, hydrothermal time of 12 h) for the preparation of SC were obtained. Subsequently, SC could effectively load ZVI nanoparticles which displayed high dispersion on the surface of SC and in the pores among SC particles owing to steric hindrance effect. The obtained SCZ displayed a high removal efficiency of 100% within 5 h on Cr(VI) (20 mg/L), and the resultant SCZ-Cr could be conveniently separated from water because of its magnetism. Importantly, SCZ could be loaded in cardboard, and the obtained system could serve as a stable filter for removal of Cr(VI) in water. This work provides a cheap and effective method for Cr(VI) removal, which also greatly facilitates the recycling of waste carton.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b00225DOI Listing

Publication Analysis

Top Keywords

hexavalent chromium
8
crvi water
8
waste carton
8
displayed high
8
waste carton-derived
4
carton-derived nanocomposites
4
nanocomposites efficient
4
removal
4
efficient removal
4
removal hexavalent
4

Similar Publications

In this paper, Mg/Al-layered double hydroxide (Mg/Al-LDH) was modified with the natural polymers sodium alginate and guar gum, and the prepared GG/SA/Mg-Al-LDH composite microsphere adsorbent (G-LDH) showed better adsorption performance for Congo red and hexavalent chromium in aqueous solution than the Mg/Al-LDH. The adsorption and surface properties of G-LDH in terms of functional groups, basic constituent elements and structural properties were obtained by different techniques. SEM shows that the average particle size of G-LDH is between 400 and 900 nm and exhibits a distinct microsphere morphology.

View Article and Find Full Text PDF

Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia.

J Hazard Mater

December 2024

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:

Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.

View Article and Find Full Text PDF

The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.

View Article and Find Full Text PDF

Amino-functionalized manganese oxide for effective hexavalent chromium adsorption.

Environ Sci Pollut Res Int

December 2024

Laboratory of Interface Materials Environment, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco.

This study explores the use of functionalized manganese oxide (K-MnO-NH) for the removal of hexavalent chromium (Cr(VI)) ions, a highly toxic heavy metal contaminant, from wastewater. The synthesis of K-MnO-NH was achieved through a two-step process, followed by comprehensive characterization using various analytical techniques, which confirmed the material's formation as a pure phase. The K-MnO-NH exhibited exceptional chromium removal efficiency, achieving up to 90% (4.

View Article and Find Full Text PDF

Groundwater monitoring is a crucial part of groundwater remediation that produces data from various strategically placed wells to maintain a water quality standard. Using the United States Department of Energy's Hanford 100-HRD area well data, recurrent neural networks are trained in the form of one-dimensional Convolutional Neural Networks (CNNs), Long Short Term Memory (LSTM) networks, and Dual-stage Attention-based LSTM (DA-LSTM) networks to reduce monitoring costs and increase data sampling responsiveness that is subject to laboratory analysis delays, with the best network being DA-LSTM achieving an R score of 0.82.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!