Chronic pulmonary infection is a hallmark of lung disease in cystic fibrosis (CF). Infections dominated by non-fermentative Gram-negative bacilli are particularly difficult to treat and highlight an urgent need for the development of new class of agents to combat these infections. In this work, a small library comprising thiourea and guanidine derivatives with low molecular weight was designed; these derivatives were studied as antimicrobial agents against Gram-positive, Gram-negative, and a panel of drug-resistant clinical isolates recovered from patients with CF. One novel compound, a guanidine derivative bearing adamantane-1-carbonyl and 2-bromo-4,6-difluouro-phenyl substituents (), showed potent bactericidal activity against the strains tested, at levels generally higher than those exhibited by tobramycin, ceftazimide and meropenem. The role that different substituents exert in the antimicrobial activity has been determined, highlighting the importance of the halo-phenyl group in the guanidine moiety. The new compound displays low levels of cytotoxicity against THP-1 and A549 cells with a selective index (SI) > 8 (patent application PCT/IB2017/054870, August 2017). Taken together, our results indicate that can be considered as a promising antimicrobial agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6100397 | PMC |
http://dx.doi.org/10.3390/molecules23051158 | DOI Listing |
Microorganisms
January 2025
The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Coxsackievirus B (CVB) infections, ranging from mild to severe diseases, lack specific antiviral treatments, underscoring the need for novel therapeutic strategies. Drug therapy is an important tool for controlling enterovirus infections, but clinically effective drugs do not currently exist, mainly due to the development of drug resistance. Combination therapy with two or more drugs has the potential to successfully inhibit viral infection more effectively than either drug alone as well as delay the development of resistance.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 563003, China.
Background: Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450045, China.
A series of biodegradable nanoparticle-based drug delivery systems have been designed utilizing poly(β-amino ester)-guanidine-phenylboronic acid (PBAE-G) polymers. In this study, a novel Lentinan-Functionalized PBAE-G-nanodiamond system was developed to carry ovalbumin (LNT-PBAE-G-ND@OVA). The impact of this drug delivery system on the activation and maturation of macrophages was then assessed.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ, London, UK.
We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry and the Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States.
The melanocortin receptors are a class of centrally and peripherally expressed G protein-coupled receptors, of which the MC3R and MC4R subtypes are implicated in the regulation of appetite and energy homeostasis and can serve as potential therapeutic targets for disorders such as obesity and cachexia. An unbiased high-throughput mixture-based library screen was implemented to identify novel ligands with an emphasis on the identification of nanomolar-potent agonists of the mouse melanocortin-3 receptor. This screen yielded the discovery of an N-branched tricyclic guanidine scaffold (TPI2408) that contained three nanomolar potent mMC3R agonists and additional compounds that possessed antagonism for the mMC4R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!