AI Article Synopsis

  • Long-term unregulated mining of ion-adsorption clays in China has led to significant ecological damage, creating wasteland that requires rehabilitation through soil amendment and revegetation.
  • The study utilized sludge biochar from municipal sewage sludge and alfalfa for pot trials, finding that both methods improved soil properties and plant growth, with synergistic benefits when combined.
  • Results indicated that these amendments positively affected the soil microbial community structure, with various environmental factors influencing these outcomes, while also providing a potential solution for managing municipal waste effectively.

Article Abstract

Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982004PMC
http://dx.doi.org/10.3390/ijerph15050965DOI Listing

Publication Analysis

Top Keywords

sludge biochar
36
alfalfa revegetation
28
biochar amendment
24
revegetation sludge
20
soil physicochemical
16
physicochemical properties
16
mining wasteland
16
iac mining
12
microbial community
12
sludge
11

Similar Publications

Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.

View Article and Find Full Text PDF

Overcoming ammonia inhibition via biochar-assisted anaerobic co-digestion of thermally-treated thickened waste activated sludge and food waste.

J Environ Manage

December 2024

Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada. Electronic address:

The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m/day) with and without biochar (BC) addition.

View Article and Find Full Text PDF

Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water.

Water Res

December 2024

Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:

As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.

View Article and Find Full Text PDF

The Effect of Biochar on Tomato () Cultivar Micro-Tom Grown under Continuous Light.

J Soil Sci Plant Nutr

November 2024

Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, Wales SA2 8PP UK.

Unlabelled: Continuous lighting (CL) has the potential to increase crop yield in greenhouse production. Tomato plants, however, when exposed to CL develop inter-vascular chlorosis, a leaf injury which causes a reduction in chlorophyll content and necrosis. The application of biochar can reduce physiological stress in plants, we examine if biochar also reduces necrosis in tomatoes when grown under CL.

View Article and Find Full Text PDF

Compared to the laboratory preparation of biochar, there is less research on the adsorption of antibiotics by industrial production of biochar in water. In this study, three types of industrial production biochar (peanut shell biochar, sludge biochar, and perishable waste biochar) were selected, and their adsorption performance for tetracycline in composite-polluted water was systematically studied. The results indicated that the Freundlich equation could well fit the adsorption isotherms of the three types of biochar for tetracycline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!