Screening of Natural Product Derivatives Identifies Two Structurally Related Flavonoids as Potent Quorum Sensing Inhibitors against Gram-Negative Bacteria.

Int J Mol Sci

Pharmaceutical Design and Discovery (PharmDD), Pharmaceutical Biology, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, FI-00014 Helsinki, Finland.

Published: May 2018

Owing to the failure of conventional antibiotics in biofilm control, alternative approaches are urgently needed. Inhibition of quorum sensing (QS) represents an attractive target since it is involved in several processes essential for biofilm formation. In this study, a compound library of natural product derivatives ( = 3040) was screened for anti-quorum sensing activity using as reporter bacteria. Screening assays, based on QS-mediated violacein production and viability, were performed in parallel to identify non-bactericidal QS inhibitors (QSIs). Nine highly active QSIs were identified, while 328 compounds were classified as moderately actives and 2062 compounds as inactives. Re-testing of the highly actives at a lower concentration against , complemented by a literature search, led to the identification of two flavonoid derivatives as the most potent QSIs, and their impact on biofilm maturation in and was further investigated. Finally, effects of these leads on swimming and swarming motility of were quantified. The identified flavonoids affected all the studied QS-related functions at micromolar concentrations. These compounds can serve as starting points for further optimization and development of more potent QSIs as adjunctive agents used with antibiotics in the treatment of biofilms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983823PMC
http://dx.doi.org/10.3390/ijms19051346DOI Listing

Publication Analysis

Top Keywords

natural product
8
product derivatives
8
quorum sensing
8
potent qsis
8
screening natural
4
derivatives identifies
4
identifies structurally
4
structurally flavonoids
4
flavonoids potent
4
potent quorum
4

Similar Publications

Seed color is a critical quality trait in numerous plant species. In oilseed crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure.

View Article and Find Full Text PDF

Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer.

View Article and Find Full Text PDF

Exploring the plant lipidome: techniques, challenges, and prospects.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.

View Article and Find Full Text PDF

Strategies to increase the robustness of microbial cell factories.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!