Sustainable water basin management requires characterization of flow regime in river networks impacted by anthropogenic pressures. Flow regime in ungauged catchments under current, future, or natural conditions can be assessed with hydrological models. Developing hydrological models is, however, resource demanding such that decision makers might revert to models that have been developed for other purposes and are made available to them ('off-the-shelf' models). In this study, the impact of epistemic uncertainty of flow regime indicators on flow-ecological assessment was assessed at selected stations with drainage areas ranging from about 400 to almost 90,000km in four South European basins (Adige, Ebro, Evrotas and Sava). For each basin, at least two models were employed. Models differed in structure, data input, spatio-temporal resolution, and calibration strategy, reflecting the variety of conditions and purposes for which they were initially developed. The uncertainty of modelled flow regime was assessed by comparing the modelled hydrologic indicators of magnitude, timing, duration, frequency and rate of change to those obtained from observed flow. The results showed that modelled flow magnitude indicators at medium and high flows were generally reliable, whereas indicators for flow timing, duration, and rate of change were affected by large uncertainties, with correlation coefficients mostly below 0.50. These findings mirror uncertainty in flow regime indicators assessed with other methods, including from measured streamflow. The large indicator uncertainty may significantly affect assessment of ecological status in freshwater systems, particularly in ungauged catchments. Finally, flow-ecological assessments proved very sensitive to reference flow regime (i.e., without anthropogenic pressures). Model simulations could not adequately capture flow regime in the reference sites comprised in this study. The lack of reliable reference conditions may seriously hamper flow-ecological assessments. This study shows the pressing need for improving assessment of natural flow regime at pan-European scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.09.295 | DOI Listing |
Molecules
January 2025
Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea.
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Yildiz Technical University, Istanbul 34349, Turkey.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI).
View Article and Find Full Text PDFPLoS One
January 2025
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China.
Spillway chutes are critical in dam flood control, particularly in high dams where high water heads and large discharge in narrow canyons amplify the demand for safe discharging. For large unit discharges in spillways, aeration protection is essential to prevent cavitation erosion, but challenges arise from air duct choking in the traditional spillway and nonaerated regions in the stepped spillway. This paper introduces a novel spillway called the pre-aerated stilling basin spillway (PSBS).
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Bakulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russia.
The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.
View Article and Find Full Text PDFSci Rep
January 2025
Shanxi Provincial Geological Prospecting Bureau, Taiyuan, 030001, China.
In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!