Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oral microparticles (MPs) have been considered as promising drug carriers in the treatment of ulcerative colitis (UC). Here, a facile strategy based on a conventional emulsion-solvent evaporation technique was used to fabricate bowl-shaped MPs (BMPs), and these MPs loaded with anti-inflammatory drug (curcumin, CUR) during the fabrication process. The physicochemical properties of the resultant BMPs were characterized by dynamic light scattering, scanning electron microscope, confocal laser scanning microscope and X-ray diffraction as well as contact angle goniometer. Results indicated that BMPs had a desirable hydrodynamic diameter (1.84 ± 0.20 μm), a negative zeta potential (-26.5 ± 1.13 mV), smooth surface morphology, high CUR encapsulation efficiency and controlled drug release profile. It was found that CUR molecules were dispersed in an amorphous state within the polymeric matrixes. In addition, BMPs showed excellent hydrophilicity due to the presence of Pluronic F127 and poly(vinyl alcohol) on their surface. More importantly, orally administered BMPs could efficiently alleviate UC based on a dextran sulfate sodium-induced mouse model. These results collectively suggest that BMP can be exploited as a readily scalable oral drug delivery system for UC therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.05.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!