Parathyroid hormone (PTH1-34)-loaded dry powders were fabricated from aqueous solution for pulmonary administration using supercritical fluid assisted atomization introduced by a hydrodynamic cavitation mixer (SAA-HCM). Herein, chitosan oligosaccharide (CSO) was selected as a carrier in an effort to enhance transmucosal absorption of the drug. Well-defined, separated and spherical PTH(1-34)/CSO composite microparticles were obtained, and the particles size could be well controlled with narrow distribution. Aerodynamic performance was determined using next generation impactor (NGI), and the mass median aerodynamic diameter (MMAD) ranged strictly 1-5 μm range with fine particle fraction (FPF) up to 63.51%. The structural integrity of coprecipitated PTH(1-34) was validated by HPLC, FT-IR and circular dichroism, and a high loading efficiency up to 92.8% was obtained. TGA analyses revealed its thermal stability was preserved and XRD patterns showed amorphous structure of particles. The SAA-HCM process is proposed as a green technique for preparation of inhalable protein/polymer composite dry powders without use of any organic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.05.022DOI Listing

Publication Analysis

Top Keywords

parathyroid hormone
8
hormone pth1-34-loaded
8
chitosan oligosaccharide
8
supercritical fluid
8
fluid assisted
8
assisted atomization
8
dry powders
8
preparation micrometric
4
micrometric powders
4
powders parathyroid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!