Unlabelled: Resin biostability is of critical importance to the durability of methacrylate-based dental resin restorations. Current methods for evaluating biostability take considerable time, from weeks to months, and provide no short-time kinetics of resin degradation. The objective of this study is to develop a more sensitive method to assess resin biostability over short-time spans (hours to days) that will enhance our understanding of biostability and its resin chemistry. Ultra-flat resin films of equimolar urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) are produced through photo-curing between two flat surfaces. Next, metal-covered enclaves and bare-resin channels are generated using stencil lithography to create both degradable and protected (internal reference) regions simultaneously in a single specimen. Resins having three different degrees of vinyl conversion (DC) are compared, and changes of surface roughness and step height in the two regions are monitored by atomic force microscopy (AFM) before and after incubated in enzyme solutions and saline controls. Specimen biostability is ranked based on the topological profile changes when viewed in cross-section before and after enzymatic challenges. In addition, a model is proposed to quantify specimen enzymatic degradation. Based on this model, enzymatic degradation is detected as early as 4 h, and a surge of enzymatic degradation is detected between 4 h and 8 h. The correlation between the DC of resin network and the surge in degradation is discussed. In summary, this new method is effective in ranking biostability and quantifying enzymatic degradation while also reducing labor, time and cost, which lends itself well to materials development and evaluation of dental resins.
Statement Of Significance: We report, for the first time, the short-time kinetics of enzymatic degradation of methacrylate dental resins. A nanotechnology based method is developed to accelerate the evaluation of resin biostability. This new method reduces experimental time from weeks to one or two days, which will significantly reduce the costs of labor and enzymes. It also introduces a corresponding parameter (ΔH) and a three-cause model for ranking biostability, which confirms the correlation of chemical structure (DC) and material performance and opens new opportunities for studying the resin biostability and its impact on dental applications. Overall, this is a new tool for evaluating resin biostability and developing new materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2018.05.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!