Accelerated bone loss (ABL) shown on routine dual-energy X-ray absorptiometry (DXA) may be accompanied by microarchitectural changes, increased cortical porosity, and lower bone strength. To test this hypothesis, we performed a cross-sectional study and used high-resolution peripheral quantitative computed tomography (HR-pQCT) scans (Scanco Medical AG, Brüttisellen, Switzerland) to measure estimated bone strength and microarchitecture in the distal radius and distal and diaphyseal tibia. We studied 1628 men who attended the year 14 exam of the Osteoporotic Fractures in Men (MrOS) study. We retrospectively characterized areal bone mineral density (aBMD) change from the year 7 to year 14 exam in three categories: "accelerated" loss, ≥10% loss at either the total hip or femoral neck (n = 299, 18.4%); "expected" loss, <10% (n = 1061, 65.2%), and "maintained" BMD, ≥0% (n = 268, 16.5%). The ABL cut-off was a safety alert established for MrOS. We used regression models to calculate adjusted mean HR-pQCT parameters in men with ABL, expected loss, or maintained BMD. Men who experienced ABL were older and had a lower body mass index and aBMD and experienced greater weight loss compared with other men. Total volumetric BMD and trabecular and cortical volumetric BMD were lower in men with ABL compared with the expected or maintained group. Men with ABL had significantly lower trabecular bone volume fraction (BV/TV), fewer trabeculae, and greater trabecular separation at both the distal radius and tibia than men with expected loss or who maintained aBMD, all p trend <0.001. Men with ABL had lower cortical thickness and lower estimated bone strength, but there was no difference in cortical porosity except at the tibia diaphyseal site. In summary, men with ABL have lower estimated bone strength, poorer trabecular microarchitecture, and thinner cortices than men without ABL but have similar cortical porosity. These impairments may lead to an increased risk of fracture. © 2018 American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330703 | PMC |
http://dx.doi.org/10.1002/jbmr.3468 | DOI Listing |
Mater Today Bio
February 2025
China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China. Electronic address:
Osteoarthritis affects approximately 500 million individuals globally, with severe cases often leading to osteochondral defects. Biomimetic collagen-hydroxyapatite scaffolds have been investigated for the treatment of osteochondral defects. However, achieving precise mimicry of the intricate composition, gradient nanostructure, and biological function of native tissue remains a formidable challenge.
View Article and Find Full Text PDFJ Control Release
January 2025
College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China. Electronic address:
The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX.
View Article and Find Full Text PDFTissue Cell
January 2025
Biomedical Engineering Department, Amirkabir University of Technology, Tehran 159163-4311, Iran. Electronic address:
Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.
Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.
Cell Signal
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:
Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!