Ferns are an important component of ecosystems around the world. Studies of the impacts that global changes may have on ferns are scarce, yet emerging studies indicate that some species may be particularly sensitive to climate change. The lack of research in this subject is much more aggravated in the case of epiphytes, and especially those that live under temperate climates. A mathematical model was developed for two temperate epiphytic ferns in order to predict potential impacts on spore germination kinetics, in response to different scenarios of global change, coming from increasing temperature and forest fragmentation. Our results show that an increasing temperature will have a negative impact over the populations of these temperate epiphytic ferns. Under unfragmented forests the germination percentage was comparatively less influenced than in fragmented patches. This study highlight that, in the long term, populations of the studied epiphytic temperate ferns may decline due to climate change. Overall, epiphytic fern communities will suffer changes in diversity, richness and dominance. Our study draws attention to the role of ferns in epiphytic communities of temperate forests, emphasizing the importance of considering these plants in any conservation strategy, specifically forest conservation. From a methodological point of view, the model we propose could be easily used to dynamically monitor the status of ecosystems, allowing the quick prediction of possible future scenarios, which is a crucial issue in biodiversity conservation decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5947888 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197110 | PLOS |
Sci Rep
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.
View Article and Find Full Text PDFFront Microbiol
November 2024
Heilongjiang Huzhong National Nature Reserve, Huzhong, Greater Khingan Mountains Region, China.
Introduction: Epiphytic and endophytic fungi are primary decomposers of forest litter due to their complex species composition and metabolic functions. To clarify the community diversity of phyllospheric fungi and to explore nutrient loss and the role of fungal decomposition, we conducted a study on the decomposition of leaf litter during the 1-year decomposition of in the cold temperate zone.
Methods: Fungal diversity data were characterized via Single Molecule Sequencing (based on the Sequel II Sequencing System) and statistical analyses in R.
J Chromatogr A
November 2024
UNINA-DF, University of Naples Federico II, School of Medicine and Surgery, Department of Pharmacy, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
Environ Monit Assess
August 2024
Department of Biology, Boston University, Boston University, Boston, MA, USA.
Microplastics are fast-emerging as another potential threat to already globally declining seagrass ecosystems, but there is a paucity of in situ surveys showing their accumulations. Here, we surveyed multiple Zostera marina L. meadows in 2020 and 2021 across Massachusetts, USA, for microplastic contamination, as well as identified factors related to patterns of accumulation.
View Article and Find Full Text PDFMicroorganisms
July 2024
State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Key Laboratory of Ornamental Plants Germplasm, Innovation and Molecular Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
and are well-known orchid genera that grow in terrestrial habitats in the tropics, subtropics or temperate zones. Three species have been found in subtropical regions of China, inhabiting terrestrial to epiphytic habitats. This study focuses on three species, (distributed in Asia), , and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!