The three-fold bridged dinuclear Cu(I) complex Cu(μ-I)(1 N- n-butyl-5-diphenyl-phosphino-1,2,4-triazole), CuI(P^N), shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85% at an emission decay time of 7 μs. The singlet (S)-triplet (T) energy gap is as small as only 430 cm (53 meV). Spin-orbit coupling induces a short-lived phosphorescence with a decay time of 52 μs ( T = 77 K) and a distinct zero-field splitting (ZFS) of T into substates by ∼2.5 cm (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ∼13% as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs, exploiting both the singlet and triplet harvesting mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b00957 | DOI Listing |
Ophthalmic Physiol Opt
January 2025
Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia.
Introduction: Tear exchange during contact lens wear is essential for ocular surface integrity, facilitating debris removal, and maintaining corneal metabolism. Fluorophotometry and fluorogram methods are typically used to measure tear exchange, which require hardware modifications to a slit lamp biomicroscope. This manuscript introduces an alternative method using a corneoscleral profilometer, the Eye Surface Profiler (ESP), to quantify tear exchange during corneal and scleral rigid lens wear by assessing fluorescence intensity changes over time.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
January 2025
Introduction: Cross-sectional resting-state functional magnetic resonance imaging (rsfMRI) studies have revealed altered complexity with advanced Alzheimer's disease (AD) stages. The current study conducted longitudinal rsfMRI complexity analyses in AD.
Methods: Linear mixed-effects (LME) models were implemented to evaluate altered rates of disease progression in complexity across disease groups.
J Acoust Soc Am
January 2025
Division of Applied Acoustics, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
An approach is proposed for reduction index measurement where impulse response data are utilised directly without relying on intermediate reverberation time estimation. The theoretical framework is presented and the main result is substantiated by shown equivalence to the conventional method for ideal exponential decay curves of acoustic energy. Additionally, the study introduces a formula for estimating effective reverberation time in cases of non-exponential decay curves.
View Article and Find Full Text PDFSci Rep
January 2025
Nonprofitable Organization Touche NPO, Sapporo, 060-004, Japan.
In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.
Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals have been widely used to study how cortical neural circuits perform cognitive tasks. Training such networks to perform tasks that require information maintenance over a brief period (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!