Aromatic C-H bond activation has attracted much attention due to its versatile applications in the synthesis of aryl-containing chemicals. The major challenge lies in the minimization of the activation barrier and maximization of the regioselectivity. Here, we report the highly selective activation of the central aromatic C-H bond in meta-aryne species anchored to a copper surface, which catalyzes the C-H bond dissociation. Two prototype molecules, i.e., 4',6'-dibromo- meta-terphenyl and 3',5'-dibromo- ortho-terphenyl, have been employed to perform C-C coupling reactions on Cu(111). The chemical structures of the resulting products have been clarified by a combination of scanning tunneling microscopy and noncontact atomic force microscopy. Both methods demonstrate a remarkable weakening of the targeted C-H bond. Density functional theory calculations reveal that this efficient C-H activation stems from the extraordinary chemisorption of the meta-aryne on the Cu(111) surface, resulting in the close proximity of the targeted C-H group to the Cu(111) surface and the absence of planarity of the phenyl ring. These effects lead to a lowering of the C-H dissociation barrier from 1.80 to 1.12 eV, in agreement with the experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b01658 | DOI Listing |
Chem Sci
December 2024
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK
The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.
View Article and Find Full Text PDFChemistry
January 2025
Boreskov Institute of Catalysis SB RAS, Siberian Branch of Russian Academy of Sciences, RUSSIAN FEDERATION.
Cu-modified zeolites provide methane conversion to methanol with high selectivity under mild conditions. The activity of different possible Cu-sites for methane transformation is still under discussion. Herein, ZSM-5 zeolite has been loaded with Cu2+ cations (1.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
The temperature-dependent switching behavior of the saccharin radical is demonstrated, enabling the regiodivergent C-H and C-H functionalization of quinoxalin-2(1)-ones. The saccharin radical was generated through N-Br bond cleavage in -bromosaccharin (NBSA) and was observed to transition between radical and radicophile roles. At -10 °C, it was utilized as a radicophile, resulting in 100% C-amination, while at +35 °C, it acted as a radical, leading to exclusive C-bromination.
View Article and Find Full Text PDFSci Technol Adv Mater
December 2024
Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Fukuoka, Japan.
Alkaline-earth metal oxides with the rocksalt structure, which are simple ionic solids, have attracted attention in attempts to gain fundamental insights into the properties of metal oxides. The surfaces of alkaline-earth metal oxides are considered promising catalysts for the oxidative coupling of methane (OCM); however, the development of such catalysts remains a central research topic. In this paper, we performed first-principles calculations to investigate the ability of four alkaline-earth metal oxides (MgO, CaO, SrO, and BaO) to catalyze the OCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!