One major limiting factor that prevents the accurate delineation of vessel boundaries has been the presence of blurred boundaries and vessel-like structures. Overcoming this limitation is exactly what we are concerned about in this paper. We describe a very different segmentation method based on a cascade-AdaBoost-SVM classifier. This classifier works with a vessel axis + cross-section model, which constrains the classifier around the vessel. This has the potential to be both physiologically accurate and computationally effective. To further increase the segmentation accuracy, we organize the AdaBoost classifiers and the Support Vector Machine (SVM) classifiers in a cascade way. And we substitute the AdaBoost classifier with the SVM classifier under special circumstances to overcome the overfitting issue of the AdaBoost classifier. The performance of our method is evaluated on synthetic complex-structured datasets, where we obtain high overlap ratios, around 91%. We also validate the proposed method on one challenging case, segmentation of carotid arteries over real clinical datasets. The performance of our method is promising, since our method yields better results than two state-of-the-art methods on both synthetic datasets and real clinical datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884412 | PMC |
http://dx.doi.org/10.1155/2018/3636180 | DOI Listing |
Biomed Res Int
September 2018
School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
One major limiting factor that prevents the accurate delineation of vessel boundaries has been the presence of blurred boundaries and vessel-like structures. Overcoming this limitation is exactly what we are concerned about in this paper. We describe a very different segmentation method based on a cascade-AdaBoost-SVM classifier.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2013
In this paper, we propose a cascade-AdaBoost-support vector machine (SVM) classifier to complete the triaxial accelerometer-based fall detection method. The method uses the acceleration signals of daily activities of volunteers from a database and calculates feature values. By taking the feature values of a sliding window as an input vector, the cascade-AdaBoost-SVM algorithm can self-construct based on training vectors, and the AdaBoost algorithm of each layer can automatically select several optimal weak classifiers to form a strong classifier, which accelerates effectively the processing speed in the testing phase, requiring only selected features rather than all features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!