The realization of a synthetic biology approach to microbial (1,2,5)-()-menthol () production relies on the identification of a gene encoding an isopulegone isomerase (IPGI), the only enzyme in the biosynthetic pathway as yet unidentified. We demonstrate that Δ5-3-ketosteroid isomerase (KSI) from can act as an IPGI, producing ()-(+)-pulegone (()-) from (+)--isopulegone (). Using a robotics-driven semirational design strategy, we identified a key KSI variant encoding four active site mutations, which confer a 4.3-fold increase in activity over the wild-type enzyme. This was assisted by the generation of crystal structures of four KSI variants, combined with molecular modeling of binding to identify key active site residue targets. The KSI variant was demonstrated to function efficiently within cascade biocatalytic reactions with downstream enzymes pulegone reductase and (-)-menthone:(-)-menthol reductase to generate from . This study introduces the use of a recombinant IPGI, engineered to function efficiently within a biosynthetic pathway for the production of in microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5937688 | PMC |
http://dx.doi.org/10.1021/acscatal.7b04115 | DOI Listing |
ACS Catal
March 2018
Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom.
The realization of a synthetic biology approach to microbial (1,2,5)-()-menthol () production relies on the identification of a gene encoding an isopulegone isomerase (IPGI), the only enzyme in the biosynthetic pathway as yet unidentified. We demonstrate that Δ5-3-ketosteroid isomerase (KSI) from can act as an IPGI, producing ()-(+)-pulegone (()-) from (+)--isopulegone (). Using a robotics-driven semirational design strategy, we identified a key KSI variant encoding four active site mutations, which confer a 4.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2011
Institute of Biological Chemistry and MJ Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA.
Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway.
View Article and Find Full Text PDFJ Photochem Photobiol B
August 2010
Department of Plant Biology, University of Turin, Innovation Centre, Turin, Italy.
Modulation of secondary metabolites by UV-B involves changes in gene expression, enzyme activity and accumulation of defence metabolites. After exposing peppermint (Mentha x piperita L.) plants grown in field (FP) and in a growth chamber (GCP) to UV-B irradiation, we analysed by qRT-PCR the expression of genes involved in terpenoid biosynthesis and encoding: 1-deoxy-D-xylulose-5-phosphate synthase (Dxs), 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (Mds), isopentenyl diphosphate isomerase (Ippi), geranyl diphosphate synthase (Gpps), (-)-limonene synthase (Ls), (-)-limonene-3-hydroxylase (L3oh), (+)-pulegone reductase (Pr), (-)-menthone reductase (Mr), (+)-menthofuran synthase (Mfs), farnesyl diphosphate synthase (Fpps) and a putative sesquiterpene synthase (S-TPS).
View Article and Find Full Text PDFBiol Pharm Bull
May 2002
Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Japan.
We cloned the gene of d-limonene synthase (ArLMS) from Agastache rugosa (Labiatae). The function of ArLMS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. ArLMS consisted of 2077 nucleotides including 1839 bp of coding sequence that encodes a protein of 613 amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!