Using Mesenchymal Stromal Cells in Islet Transplantation.

Stem Cells Transl Med

Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.

Published: August 2018

Islet transplantation has the potential to cure type 1 diabetes, but current clinical transplantation protocols are inefficient because of the extensive loss of functional islets during the immediate post-transplantation period. Studies in rodent models have demonstrated that co-transplanting mesencyhmal stromal cells (MSCs) with islets improves graft functional survival and transplantation outcomes, and some of the beneficial effects of MSCs are attributable to bioactive molecules secreted by MSCs. Clinical islet transplantation is almost exclusively via the hepatic portal vein, which does not facilitate co-engraftment of islets and MSCs, so attention is currently focused on using cell-free cocktails of MSC-derived products to treat islets prior to transplantation. This approach has the potential to overcome many of the technical and regulatory hurdles associated with using MSCs as an adjuvant therapy for human islet transplantation. Stem Cells Translational Medicine 2018;7:559-563.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6090510PMC
http://dx.doi.org/10.1002/sctm.18-0033DOI Listing

Publication Analysis

Top Keywords

islet transplantation
16
stromal cells
8
transplantation
7
mscs
5
mesenchymal stromal
4
islet
4
cells islet
4
transplantation islet
4
transplantation potential
4
potential cure
4

Similar Publications

Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles.

Nano Lett

January 2025

Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States.

In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Herein, we characterized the percentage of tacrolimus to the combined sirolimus and tacrolimus trough levels (tacrolimus %) observed during islet transplant-associated immune suppression therapy with post-transplant skin cancer. Although trough levels of tacrolimus and sirolimus were not different ( = 0.79, 0.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is an autoimmune condition characterized by the destruction of pancreatic β-cells, necessitating insulin therapy to prevent life-threatening complications such as diabetic ketoacidosis. Despite advancements in glucose monitoring and pharmacological treatments, managing this disease remains challenging, often leading to long-term complications and psychological burdens, including diabetes distress. Advanced treatment options, such as whole-pancreas transplantation and islet transplantation, aim to restore insulin production and improve glucose control in selected patients with diabetes.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!