In order to study the role of long non-coding RNAs (lncRNAs) in predicting platinum-based chemoresistance in patients with high-grade serous ovarian carcinoma (HGS-OvCa), a=7-lncRNA signature was developed by analyzing 561 microarrays and 136 specimens from RNA-sequencing (RNA-seq) obtained from online databases [odds ratio (OR), 2.859; P<0.0001]. The upregulated lncRNAs (RP11-126K1.6, ZBED3-AS1, RP11-439E19.10 and RP11‑348N5.7) and downregulated lncRNAs [RNF144A-AS1, growth arrest specific 5 (GAS5) and F11-AS1] exhibited high sensitivity and specificity in predicting chemoresistance in the Gene Expression Omnibus and the Cancer Genome Atlas (area under curve >0.8). The lncRNA signature was independent of clinical characteristics and 4 HGS-OvCa molecular subtypes. This signature was negatively associated with disease-free survival (n=47; log-rank, P<0.01). Furthermore, the expression of the 7 lncRNAs was consistent with microarray (GSE63885, GSE51373, GSE15372 and GSE9891) and RNA-seq data. In in vitro experiments, ZBED3-AS1, F11-AS1 and GAS5 were differentially expressed in cell lines that are known to be resistant and non-resistant to platinum-based drugs, which was consistent with the results in the present study. This lncRNA signature may be used as a prognostic marker for predicting resistance to platinum-based chemotherapeutics in HGS-OvCa. These findings may contribute to individualized therapies in patients with HGS-OvCa in the future.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2018.4403DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
non-coding rnas
8
platinum-based chemoresistance
8
panel prognosis-related
4
prognosis-related long
4
rnas improve
4
improve platinum-based
4
chemoresistance prediction
4
prediction ovarian
4
ovarian cancer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!