Alluaudite sulfates are predicted to be high-voltage electrodes for lithium- and sodium-ion batteries. Herein, we provide the first experimental evidence for the operation of sodium cobalt-manganese sulfate, Na2+2δ(Co0.63Mn0.37)2-δ(SO4)3, at potentials higher than 4.0 V vs. Li/Li+. This fact comes as a result of the reduced cationic deficiency, redox properties of Co and Mn and stability of the alluaudite structure during alkali ion intercalation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc01922cDOI Listing

Publication Analysis

Top Keywords

redox properties
8
high-voltage electrodes
8
properties alluaudite
4
alluaudite sodium
4
sodium cobalt
4
cobalt manganese
4
manganese sulfates
4
sulfates high-voltage
4
electrodes rechargeable
4
rechargeable batteries
4

Similar Publications

Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.

View Article and Find Full Text PDF

Tumor microenvironment-responsive hyperbranched polymers for controlled drug delivery.

J Pharm Anal

December 2024

Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.

Hyperbranched polymers (HBPs) have drawn great interest in the biomedical field on account of their special morphology, low viscosity, self-regulation, and facile preparation methods. Moreover, their large intramolecular cavities, high biocompatibility, biodegradability, and targeting properties render them very suitable for anti-tumor drug delivery. Recently, exploiting the specific characteristics of the tumor microenvironment, a range of multifunctional HBPs responsive to the tumor microenvironment have emerged.

View Article and Find Full Text PDF

We investigate magnesium-iron pyroborate MgFeBO as a potential cathode material for rechargeable magnesium-ion batteries. Synchrotron powder X-ray diffraction and Mössbauer spectroscopy confirm its successful synthesis and iron stabilization in the high-spin Fe(II) state. Initial electrochemical testing against a lithium metal anode yields a first charge capacity near the theoretical value (147.

View Article and Find Full Text PDF

Cysteine derivatives having disulfide bonds in their side chains can be used as redox-responsive organogelators. The disulfide bond can be cleaved in the presence of certain reducing agents like thiol derivatives such as glutathione (GSH), which is a tripeptide that consists of cysteine, glutamic acid, and glycine. Studies show that cells of certain cancers have higher levels of glutathione due to increased production of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Nickel-based metal-organic frameworks, denoted as three-dimensional nickel trimesic acid frameworks (3D Ni-TMAF), are gaining significant attention for their application in nonenzymatic glucose sensing due to their unique properties. Ni-MOFs possess a high surface area, tunable pore structures, and excellent electrochemical activity, which makes them ideal for facilitating electron transfer and enhancing the catalytic oxidation of glucose. This research describes a new electrochemical enzyme-mimic glucose biosensor in biological solutions that utilizes 3D nanospheres Ni-TMAF created layer-by-layer on a highly porous nickel substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!