In the present manuscript, the preparation of spherical activated carbons (SACs) with suitable adsorption properties and high mechanical strength is reported, taking advantage of the retention of the spherical shape by the raw precursors. An easy procedure (carbonization followed by CO₂ activation) has been applied over a selection of three natural seeds, with a well-defined spherical shape and thermal stability: (RA), (OL), and (CI). After the carbonization-activation procedures, RA and CI, maintained their original spherical shapes and integrity, although a reduction in diameter around 48% and 25%, respectively, was observed. The porosity of the resulting SACs could be tuned as function of the activation temperature and time, leading to a spherical activated carbon with surface area up to 1600 m²/g and mechanical strength similar to those of commercial activated carbons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978147PMC
http://dx.doi.org/10.3390/ma11050770DOI Listing

Publication Analysis

Top Keywords

spherical activated
12
activated carbons
12
mechanical strength
12
high mechanical
8
spherical shape
8
spherical
7
carbons high
4
strength directly
4
directly prepared
4
prepared selected
4

Similar Publications

Designing Microparticles of Luteolin and Naringenin in Different Carriers via Supercritical Antisolvent Process.

Polymers (Basel)

December 2024

Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.

Antioxidants are contained in fruits and vegetables and are commonly obtained through food. However, it is frequently necessary to supplement the diet with substances that are often poorly soluble in water and sensitive to light and oxygen. For this reason, in this work, luteolin (LUT) and naringenin (NAR), two compounds with antioxidant activity and potential health benefits, were precipitated through the supercritical antisolvent technique using polyvinylpyrrolidone and β-cyclodextrin as the carriers.

View Article and Find Full Text PDF

Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization.

Polymers (Basel)

December 2024

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.

View Article and Find Full Text PDF

Biosynthesis and Characterization of Silver Nanoparticles and Simvastatin Association in Titanium Biofilms.

Pharmaceuticals (Basel)

November 2024

Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil.

Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!