Background: Optimal contributions selection (OCS) provides animal breeders with a framework for maximising genetic gain for a predefined rate of inbreeding. Simulation studies have indicated that the source of the selective advantage of OCS is derived from breeding decisions being more closely aligned with estimates of Mendelian sampling terms ([Formula: see text]) of selection candidates, rather than estimated breeding values (EBV). This study represents the first attempt to assess the source of the selective advantage provided by OCS using a commercial pig population and by testing three hypotheses: (1) OCS places more emphasis on [Formula: see text] compared to EBV for determining which animals were selected as parents, (2) OCS places more emphasis on [Formula: see text] compared to EBV for determining which of those parents were selected to make a long-term genetic contribution (r), and (3) OCS places more emphasis on [Formula: see text] compared to EBV for determining the magnitude of r. The population studied also provided an opportunity to investigate the convergence of r over time.
Results: Selection intensity limited the number of males available for analysis, but females provided some evidence that the selective advantage derived from applying an OCS algorithm resulted from greater weighting being placed on [Formula: see text] during the process of decision-making. Male r were found to converge initially at a faster rate than female r, with approximately 90% convergence achieved within seven generations across both sexes.
Conclusions: This study of commercial data provides some support to results from theoretical and simulation studies that the source of selective advantage from OCS comes from [Formula: see text]. The implication that genomic selection (GS) improves estimation of [Formula: see text] should allow for even greater genetic gains for a predefined rate of inbreeding, once the synergistic benefits of combining OCS and GS are realised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946451 | PMC |
http://dx.doi.org/10.1186/s12711-018-0392-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!