Microscale radiosynthesis, preclinical imaging and dosimetry study of [F]AMBF-TATE: A potential PET tracer for clinical imaging of somatostatin receptors.

Nucl Med Biol

Physics in Biology and Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA. Electronic address:

Published: June 2018

Background: Peptides labeled with positron-emitting isotopes are emerging as a versatile class of compounds for the development of highly specific, targeted imaging agents for diagnostic imaging via positron-emission tomography (PET) and for precision medicine via theranostic applications. Despite the success of peptides labeled with gallium-68 (for imaging) or lutetium-177 (for therapy) in the clinical management of patients with neuroendocrine tumors or prostate cancer, there are significant advantages of using fluorine-18 for imaging. Recent developments have greatly simplified such labeling: in particular, labeling of organotrifluoroborates via isotopic exchange can readily be performed in a single-step under aqueous conditions and without the need for HPLC purification. Though an automated synthesis has not yet been explored, microfluidic approaches have emerged for F-labeling with high speed, minimal reagents, and high molar activity compared to conventional approaches. As a proof-of-concept, we performed microfluidic labeling of an octreotate analog ([F]AMBF-TATE), a promising F-labeled analog that could compete with [Ga]Ga-DOTATATE with the advantage of providing a greater number of patient doses per batch produced.

Methods: Both [F]AMBF-TATE and [Ga]Ga-DOTATATE were labeled, the former by microscale methods adapted from manual labeling, and were imaged in mice bearing human SSTR2-overexpressing, rat SSTR2 wildtype, and SSTR2-negative xenografts. Furthermore, a dosimetry analysis was performed for [F]AMBF-TATE.

Results: The micro-synthesis exhibited highly-repeatable performance with radiochemical conversion of 50 ± 6% (n = 15), overall decay-corrected radiochemical yield of 16 ± 1% (n = 5) in ~40 min, radiochemical purity >99%, and high molar activity. Preclinical imaging with [F]AMBF-TATE in SSTR2 tumor models correlated well with [Ga]Ga-DOTATATE. The favorable biodistribution, with the highest tracer accumulation in the bladder followed distantly by gastrointestinal tissues, resulted in 1.26 × 10 mSv/MBq maximal estimated effective dose in human, a value lower than that reported for current clinical F- and Ga-labeled compounds.

Conclusions: The combination of novel chemical approaches to F-labeling and microdroplet radiochemistry have the potential to serve as a platform for greatly simplified development and production of F-labeled peptide tracers. Favorable preclinical imaging and dosimetry of [F]AMBF-TATE, combined with a convenient synthesis, validate this assertion and suggest strong potential for clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015542PMC
http://dx.doi.org/10.1016/j.nucmedbio.2018.04.001DOI Listing

Publication Analysis

Top Keywords

preclinical imaging
12
imaging
8
imaging dosimetry
8
peptides labeled
8
greatly simplified
8
high molar
8
molar activity
8
[f]ambf-tate
5
microscale radiosynthesis
4
radiosynthesis preclinical
4

Similar Publications

Objective: To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.

Methods: This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality.

View Article and Find Full Text PDF

Hierarchically Engineered Self-Adaptive Nanoplatform Guided Intuitive and Precision Interventions for Deep-Seated Glioblastoma.

ACS Nano

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.

View Article and Find Full Text PDF

Background: Coronary stenting operations have become the main option for the treatment of coronary heart disease. Vessel recovery after stenting has emerged as a critical factor in reducing possible complications. In this study, we evaluated the feasibility, safety and efficacy of locally administered intraluminal gene therapy delivered using a specialized infusion balloon catheter.

View Article and Find Full Text PDF

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!