It is known that good mechanical properties, low modulus to reduce stress-shielding effect, favorable osteogenic activity and limited inflammatory response are critical factors for orthopedic implants to induce excellent osteointegration. In this study, Ti-20% Ta metal-metal composite (referred as Ti-Ta) which consisted of Ti- and Ta-rich phases was fabricated via the strategy of powder metallurgy. Micro-arc oxidation (MAO) was employed to modify the surface of Ti-Ta composite. The surfaces of Ti-Ta composite after MAO treatment at an applied voltage of 250 (referred as MAO-250 V) or 300 V (referred as MAO-300 V) exhibited three distinct zones with significantly different morphological features and surface chemistry. Osteoblast-like SaOS-2 cells were found to be preferential to attach on the Ta-rich phase and its surrounding areas, exhibiting an area-dependent adhesion tendency. However, the attachment of Raw 264.7 macrophages was found to be insensitive to the surface characteristics. The proliferation and differentiation of SaOS-2 cells cultured on various surfaces basically followed the trend: MAO-modified surfaces > Ti-Ta surface > Ti surface. The Ti-Ta and MAO-modified surfaces were found to inhibit the inflammatory response and polarize macrophages to anti-inflammatory M2 phenotype compared to Ti surface. Moreover, the microenvironments created by Ti-Ta, MAO-250 V and MAO-300 V/macrophage interactions promoted the proliferation and differentiation of SaOS-2 cells compared to that created by Ti/macrophage interactions. MAO-300 V surface exhibited further enhanced positive osteo-immunomodulatory effects compared to Ti-Ta surface. Together, the Ti-20% Ta metal-metal composite modified by MAO at an applied voltage of 300 V is considered as a promising implant material for orthopedic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.05.010DOI Listing

Publication Analysis

Top Keywords

metal-metal composite
12
saos-2 cells
12
inflammatory response
8
ti-20% metal-metal
8
surface ti-ta
8
ti-ta composite
8
applied voltage
8
proliferation differentiation
8
differentiation saos-2
8
ti-ta
7

Similar Publications

In present findings, a simple pyrolysis technique was applied to decorate S and N doped graphene with RuS2-CoO nanoparticles synthesizing a heterostructured nanocomposite RuS2-CoO@SNG. XPS results demonstrate the elemental composition of these nanomaterials with the hint of metal-metal charge transfer phenomenon likely due to heterostructure composition. These modifications led to a significant active surface area resulting in elevated electrocatalytic performance.

View Article and Find Full Text PDF

Ag-Mediated Growth of Au/Ag-Cu Ternary Heterostructures for Selective Electrochemical CO Reduction.

ACS Appl Mater Interfaces

October 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.

Copper (Cu)-based nanocatalysts play crucial roles in the electrochemical CO reduction reaction (ECORR) for sustainable energy resources. Particularly, Cu-based nanostructures incorporating Au and Ag are promising, offering enhanced activity, selectivity, and stability. However, precise control over the structure and composition of heterostructures remains challenging, hindering the development of highly efficient catalysts.

View Article and Find Full Text PDF

Bioinspired Homonuclear Diatomic Iron Active Site Regulation for Efficient Antifouling Osmotic Energy Conversion.

Adv Mater

November 2024

Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.

Membrane-based reverse electrodialysis is globally recognized as a promising technology for harnessing osmotic energy. However, its practical application is greatly restricted by the poor anti-fouling ability of existing membrane materials. Inspired by the structural and functional models of natural cytochrome c oxidases (CcO), the first use of atomically precise homonuclear diatomic iron composites as high-performance osmotic energy conversion membranes with excellent anti-fouling ability is demonstrated.

View Article and Find Full Text PDF

Chemically Separable Co(II) Spin-State Isomers.

J Am Chem Soc

October 2024

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

The phenomenon of spin crossover involves coordination complexes with switchable spin states. This spin state change is accompanied by significant geometric changes such that low and high spin forms of a complex are distinct isomers that exist in equilibrium with one another. Typically, spin-state isomers interconvert rapidly and are similar enough in polarity to prevent their independent separation and isolation.

View Article and Find Full Text PDF

In this study, we successfully prepared palladium/agarose/copper foam (Pd/AG/CF) composite electrodes by utilizing the three-dimensional network structure agarose (AG), a green material derived from biomass, and homogeneously immobilizing palladium (Pd) atoms on a copper foam (CF) substrate through a facile route. The electrode showed excellent performance in the electrocatalytic degradation of doxycycline (DOX), with a high DOX degradation rate of 92.19 % in 60 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!