A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A regulatory insertion-deletion polymorphism in the FADS gene cluster influences PUFA and lipid profiles among Chinese adults: a population-based study. | LitMetric

A regulatory insertion-deletion polymorphism in the FADS gene cluster influences PUFA and lipid profiles among Chinese adults: a population-based study.

Am J Clin Nutr

Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Published: June 2018

Background: Arachidonic acid (AA) is the major polyunsaturated fatty acid (PUFA) substrate for potent eicosanoid signaling to modulate inflammation and thrombosis and is controlled in part by tissue abundance. Fatty acid desaturase 1 (FADS1) catalyzes synthesis of omega-6 (n-3) AA and n-3 eicosapentaenoic acid (EPA). The rs66698963 polymorphism, a 22-base pair (bp) insertion-deletion 137 bp downstream of a sterol regulatory element in FADS2 intron 1, mediates expression of FADS1 in vitro, as well as exerting positive selection in several human populations. The associations between the polymorphism rs66698963 and plasma PUFAs as well as disease phenotypes are unclear.

Objective: This study aimed to evaluate the relation between rs66698963 genotypes and plasma PUFA concentrations and blood lipid profiles.

Design: Plasma fatty acids were measured from a single sample obtained at baseline in 1504 healthy Chinese adults aged between 35 and 59 y with the use of gas chromatography. Blood lipids were measured at baseline and a second time at the 18-mo follow-up. The rs66698963 genotype was determined by using agarose gel electrophoresis. Linear regression and logistic regression analyses were performed to assess the association between genotype and plasma PUFAs and blood lipids.

Results: A shift from the precursors linoleic acid and α-linolenic acid to produce AA and EPA, respectively, was observed, consistent with FADS1 activity increasing in the order of genotypes D/D to I/D to I/I. For I/I compared with D/D carriers, plasma concentrations of n-6 AA and the ratio of AA to n-3 EPA plus docosahexaenoic acid (DHA) were 57% and 32% higher, respectively. Carriers of the deletion (D) allele of rs66698963 tended to have higher triglycerides (β = 0.018; SE: 0.009; P = 0.05) and lower HDL cholesterol (β = -0.008; SE: 0.004; P = 0.02) than carriers of the insertion (I) allele.

Conclusions: The rs66698963 genotype is significantly associated with AA concentrations and AA to EPA+DHA ratio, reflecting basal risk of inflammatory and related chronic disease phenotypes, and is correlated with the risk of dyslipidemia. This trial was registered at chictr.org.cn as ChiCTR-EOC-17012759.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqy063DOI Listing

Publication Analysis

Top Keywords

chinese adults
8
fatty acid
8
plasma pufas
8
disease phenotypes
8
rs66698963 genotype
8
acid
7
rs66698963
6
plasma
5
regulatory insertion-deletion
4
insertion-deletion polymorphism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!