Human herpesvirus 8 (HHV-8) is causally related to human malignancies. HHV-8 latent viral FLICE-inhibitory protein (vFLIP) is a viral oncoprotein that is linked to pathogenesis, but how its expression is regulated is largely unknown. In an attempt to understand the role of the mitochondrial antiviral signaling (MAVS) adaptor in HHV-8 infection, we discovered that vFLIP expression was post-translationally up-regulated by the MAVS signaling complex on peroxisomes. Furthermore, we demonstrated that vFLIP could be targeted to the peroxisomes, where it was oncogenically active, in a PEX19-dependent manner. Targeted disruption of vFLIP and MAVS interaction resulted in a decrease in vFLIP expression and selectively promoted death of latently HHV-8-infected cells, providing therapeutic potential for treating HHV-8 diseases. Collectively, our experimental results suggest novel involvement of peroxisomes and MAVS in the stabilization of vFLIP and thereby in the establishment or maintenance of HHV-8 latency and associated pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963799 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1007058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!