We assess the accuracy of popular nonempirical GGAs (PBE, PBEsol, RPBE) and meta-GGAs (TPSS, revTPSS, and SCAN) for describing chemisorption reactions at metal surfaces. Except for RPBE, all the functionals tend to overbind the adsorbate significantly. We then propose a nonempirical meta-GGA, denoted as RTPSS, that is based on RPBE in the same way that TPSS is based on PBE. The RTPSS functional remedies the overbinding problem and improves the description of chemisorption energies. As an example of an application of RTPSS, we study the adsorption of CO on Cu surfaces (a notably difficult problem for semilocal functionals) and find that RTPSS is the only tested functional that predicts accurate chemisorption energies and the preferred adsorption site of CO. Although RTPSS gives an accurate description of chemisorption, nonlocal correlation may be necessary to describe physisorption if long-range van der Waals interactions are involved (however, this is true for semilocal functionals in general). We suggest that RTPSS can be a useful meta-GGA for studying chemisorption processes and mechanisms of heterogeneous catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.8b00288 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.
Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.
Plasmon resonance plays an important role in improving the detection of biomolecules, and it is one of the focuses of research to use metal plasmon resonance to achieve fluorescence enhancement and to improve detection sensitivity. However, the problems of nondynamic tuning and fluorescence quenching of metal plasmon resonance need to be solved. Graphene surface plasmon resonance can be dynamically controlled, and the graphene adsorption of fluorescent molecules can avoid fluorescence quenching and greatly improve the fluorescence emission intensity.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Ansteel Beijing Research Institute Co., Ltd., Beijing 102211, China.
Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.
Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.
Chem Sci
January 2025
Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University Hefei Anhui 230601 China
Controlling symmetrical or asymmetrical growth has allowed a series of novel nanomaterials with prominent physicochemical properties to be produced. However, precise and continuous size growth based on a preserved template has long been a challenging pursuit, yet little has been achieved in terms of manipulation at the atomic level. Here, a correlated silver cluster series has been established, enabling atomically precise manipulation of symmetrical and asymmetrical surface structure expansions of metal nanoclusters.
View Article and Find Full Text PDFTurk J Chem
October 2024
Supramolecular Compounds Division, Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan.
The cocrystal (or supramolecular complex) between the Cu(II) complex of salicylic acid and uncoordinated piracetam has been synthesized. Its structure is characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, and X-ray crystallography. Spectroscopic methods confirm the formation of the metal complex, while X-ray crystallography establishes the molecular and crystal structure of the obtained compound.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!