The present study was aimed at designing and optimizing a rotating disk reactor simulating high hydrodynamic shear rates (γ), which are representative of cooling circuits. The characteristics of the hydrodynamic conditions in the reactor and the complex approach used to engineer it are described. A 60 l tank was filled with freshwater containing free-living amoebae (FLA) and bacteria. Adhesion of the bacteria and formation of a biofilm on the stainless steel coupons were observed. FLA were able to establish in these biofilms under γ as high as 85,000 s. Several physical mechanisms (convection, diffusion, sedimentation) could explain the accumulation of amoeboid cells on surfaces, but further research is required to fully understand and model the fine mechanisms governing such transport under γ similar to those encountered in the industrial environment. This technological advance may enable research into these topics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2018.1444756 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
The triboelectric nanogenerator (TENG) has emerged as a promising technology for efficiently converting ambient mechanical energy into electrical energy. Among various designs, the disk-based rotational TENG has demonstrated significant potential, as it can continuously harvest energy in a sliding mode via a grating mechanism. However, horizontal mechanical energy is more common than rotational energy in many practical applications.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 55-556 Wrocław, Poland.
Background: Using hydrogels for the controlled release of drugs is beneficial for patients, who then receive the proper dose of the medicinal substance. In addition, the formulation can provide more consistent drug absorption while reducing the frequency of dosing.
Objectives: The aim of this investigation is to propose a novel HA (sodium hyaluronate)-based hydrogel for intra-articular injection doped with synthetic polymers and incorporated with bupivacaine hydrochloride (Bu) as a local anesthetic.
Nanotechnology
January 2025
Xidian University, Room 120, G building, Southern campus of Xidian University, Xi'an, Shaanxi, 710126, CHINA.
The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.
View Article and Find Full Text PDFDalton Trans
January 2025
CLIC, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Unistra, 4 rue Blaise Pascal, 67000 Strasbourg, France.
Iron-copper complexes have been extensively studied in the search for efficient cytochrome oxidase models. Whereas most dinuclear materials usually focus on fine-tuning the coordination of heme-Fe, this work shows that the coordination of copper in cytochrome oxidase models should be carefully taken into consideration. A β-cyclodextrin dimer was built around a bipyridine linker and combined with Fe-tetraphenylsulfonatoporphyrinate (FeTPPS) to generate a self-assembled hydrosoluble cytochrome oxidase model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!