Protein glycosylation is a common protein post-translational modification (PTM) in living organisms and has been shown to associate with multiple diseases, and thus may potentially be a biomarker of such diseases. Efficient protein/glycoprotein extraction is a crucial step in the preparation of N-glycans derived from glycoproteins prior to LC-MS analysis. Convenient, efficient and unbiased sample preparation protocols are needed. Herein, we evaluated the use of sodium deoxycholate (SDC) acidic labile detergent to release N-glycans of glycoproteins derived from biological samples such as cancer cell lines. Compared to the filter-aided sample preparation approach, the sodium deoxycholate (SDC) assisted approach was determined to be more efficient and unbiased. SDC removal was determined to be more efficient when using acidic precipitation rather than ethyl acetate phase transfer. Efficient extraction of proteins/glycoproteins from biological samples was achieved by combining SDC lysis buffer and beads beating cell disruption. This was suggested by a significant overall increase in the intensities of N-glycans released from cancer cell lines. Additionally, the use of SDC approach was also shown to be more reproducible than those methods that do not use SDC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.8b00127 | DOI Listing |
Science
January 2025
NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFPharmacoepidemiol Drug Saf
January 2025
Hunan Institute for Drug Control, Changsha, Hunan, China.
Background And Objectives: Based on the Adverse Event Reporting System (FAERS) data from the US FDA, this study mined the adverse drug reactions of obeticholic acid (OCA) in the real world and provided reference for clinical safe drug use.
Methods: Adverse event reports for OCA from the second quarter of 2016 to the third quarter of 2023 were extracted. The analysis for adverse reaction signal detection was conducted using reporting odds ratio, proportional reporting ratio, Bayesian confidence propagation neural network, and multi-item gamma Poisson shrinker methods.
Biomed Chromatogr
February 2025
Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Deoxycholic acid (DCA) injection is applied in treating moderate to severe submental bulge or facial fullness caused by excessive submental fat accumulation. Using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology, which was swiftly, precisely, and reliably confirmed, DCA was determined in human plasma with low quantification limits of 56 ng/mL. We selected six healthy individual blank human plasma with low concentrations of endogenous DCA and mixed them to prepare standard curve samples.
View Article and Find Full Text PDFHepatol Commun
December 2024
Division of Gastroenterology and Hepatology, Department of Medicine, The Autoimmune and Rare Liver Disease Programme, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
Molecules
December 2024
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria.
Micelles formed by bile salts in aqueous solution are important for the solubilization of hydrophobic molecules in the gastrointestinal tract. The molecular level information about the mechanism and driving forces for primary-to-secondary micelle transition is still missing. In the current study, the micelle formation of 50 mM solutions of taurodeoxycholate (TDC) is studied by atomistic molecular dynamics simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!