Detailed photophysical investigations have been carried out using a probe dye, coumarin-153 (C153), to understand the microenvironments of micelles formed by the newly introduced Tetronic star block copolymers, T1304 and T1307, having the same poly(propylene oxide) (PPO) block size but different poly(ethylene oxide) (PEO) block sizes. Ground state absorption, steady-state fluorescence, and time-resolved fluorescence measurements have been used to estimate the micropolarity, microviscosity, and solvation dynamics within the two micelles. To the best of our knowledge, this is the first report on these important physicochemical parameters for this new class of the star block copolymer micelles. Our results indicate that T1307 micelle offers a relatively more polar and less viscous microenvironment in the corona region, compared to T1304. The effect of the two micellar systems has subsequently been investigated on the bimolecular photoinduced electron transfer (ET) reactions between coumarin dyes (electron acceptors) and aromatic amines (electron donors). On correlating the energetics and kinetics of the ET reactions, clear Marcus inversion (MI) behavior is observed in both of the micellar media. Interestingly, the ET rates for all of the donor-acceptor pairs are much higher in T1307 than in T1304, and the onset of MI also appears at a relatively higher exergenocity (-Δ G) in the former micelle (∼0.45 eV for T1307) than the latter (∼0.37 eV for T1304). The effect of added NaCl salt studied selectively in T1307 micelle shows that the ET rate decreases significantly along with a shift in the onset of MI toward lower exergenocity region, so that in the presence of 2 M NaCl the system becomes quite comparable to T1304. On the basis of the observed results, it is realized that the micropolarity and hence the dynamics of the ET process can be tuned very effectively either by changing the constitution of the star block copolymer or by using a suitable additive as a modifier of the micellar microenvironment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b01778 | DOI Listing |
J Immunother Cancer
January 2025
Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
Acylation stands as a fundamental process in both biological pathways and synthetic chemical reactions, with acylated saccharides and their derivatives holding diverse applications ranging from bioactive agents to synthetic building blocks. A longstanding objective in organic synthesis has been the site-selective acylation of saccharides without extensive pre-protection of alcohol units. In this study, we demonstrate that by simply altering the chirality of N-heterocyclic carbene (NHC) organic catalysts, the site-selectivity of saccharide acylation reactions can be effectively modulated.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia.
Advancements in polymer chemistry have enabled the design of macromolecular structures with tailored properties for diverse applications. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a controlled technique for precise polymer design. Automation tools further enhance polymer synthesis by enabling the rapid, reproducible preparation of polymer libraries.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Hannoversche Str. 28, 10115 Berlin, Germany; Charité - Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany. Electronic address:
Spatial transcriptomics (ST) is fundamental for understanding molecular mechanisms in health and disease. Here, we present a protocol for efficient and high-resolution ST in 2D/3D with Open-ST. We describe all steps for repurposing Illumina flow cells into spatially barcoded capture areas and preparing ST libraries from stained cryosections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!