Photo physical properties of fluorescent organic compounds give an immense improved knowledge on characteristics of excited state that is beneficial to devise innovate molecules and understand their performance in particular applications. Coumarin derivatives have been extensively investigated in this regard. This article narrates steady state fluorescence quenching measurements of a coumarin derivative namely 3-hydroxy-3-[2-oxo-2-(3-oxo-3H-benzo[f]chromen-2-yl)-ethyl]-1,3-dihydro-indol-2-one (3HBCD) in a binary mixture of acetonitrile and 1,4-dioxane. Aniline is used as quencher. Fluorescence intensity is large in acetonitrile and decreases as the percentage of 1,4-dioxane in the solvent mixture increases. With modest quencher concentration a deviation towards the x axis is noticed in the Stern-Volmer (S-V) plots. This downward curvature is interpreted as due to the presence of 3HBCD in different conformers in the lowest energy level. Ground state intramolecular hydrogen bonding formation is observed due to the conformational changes in the solute. Figured estimations of various quenching parameters recommend that, while dynamic quenching prompts linearity in S-V plot at lower quencher concentration, increasing quenching efficiency with increasing medium viscosity suggests that reaction is not entirely controlled by material diffusion. Stern-Volmer constant increases with decreasing medium dielectric constant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.3492 | DOI Listing |
Nat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFJ Mol Model
January 2025
Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.
Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.
View Article and Find Full Text PDFMolecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Van der Waals (vdW) dielectrics are extensively employed to enhance the performance of 2D electronic devices. However, current vdW dielectric materials still encounter challenges such as low dielectric constant (κ) and difficulties in synthesizing high-quality single crystals. 2D rare-earth oxyhalides (REOXs) with exceptional electrical properties present an opportunity for the exploration of novel high-κ dielectrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!